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Abstract

The development of deep learning techniques has allowed Neural Machine Translation
(NMT) models to become extremely powerful, given sufficient training data and training
time. However, such translation models struggle when translating text of a specific domain.
A domain may consist of text on a well-defined topic, or text of unknown provenance with
an identifiable vocabulary distribution, or language with some other stylometric feature.
While NMT models can achieve good translation performance on domain-specific data via
simple tuning on a representative training corpus, such data-centric approaches have negative
side-effects. These include over-fitting, brittleness, and ‘catastrophic forgetting’ of previous
training examples.

In this thesis we instead explore more robust approaches to domain adaptation for NMT.
We consider the case where a system is adapted to a specified domain of interest, but may
also need to accommodate new language, or domain-mismatched sentences. We explore
techniques relating to data selection and curriculum, model parameter adaptation procedure,
and inference procedure. We show that iterative fine-tuning can achieve strong performance
over multiple related domains, and that Elastic Weight Consolidation can be used to mitigate
catastrophic forgetting in NMT domain adaptation across multiple sequential domains. We
develop a robust variant of Minimum Risk Training which allows more beneficial use of
small, highly domain-specific tuning sets than simple cross-entropy fine-tuning, and can
mitigate exposure bias resulting from domain over-fitting. We extend Bayesian Interpolation
inference schemes to Neural Machine Translation, allowing adaptive weighting of NMT
ensembles to translate text from an unknown domain.

Finally we demonstrate the benefit of multi-domain adaptation approaches for other lines
of NMT research. We show that NMT systems using multiple forms of data representation
can benefit from multi-domain inference approaches. We also demonstrate a series of domain
adaptation approaches to mitigating the effects of gender bias in machine translation.
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Chapter 1

Introduction

1.1 Motivation

When automatically translating a sentence, a model that has previously encountered similar
sentences is likely to produce a better translation. Likewise, a domain of sentences will be
best translated by a Neural Machine Translation (NMT) system that is adapted to that domain.
The focus of this thesis is on approaches to domain adaptation for NMT systems.

In this thesis, we interpret domain adaptation as any scheme intended to improve transla-
tions for a certain topic or genre of language. Examples include adapting model parameters
with translations of sentences in the domain of interest, or constraining the model output to
produce only vocabulary in the domain of interest.

In the definition of a domain we primarily follow Koehn and Knowles (2017), who state
that a domain ‘may differ from other domains in topic, genre, style, level of formality, etc.’
However, we add two important caveats. Firstly we do not necessarily define a domain as ‘a
corpus from a specific source’: while we find provenance useful for describing behaviour
and reporting results, we do not consider it an exclusive domain marker. Secondly, in many
practical cases the domain of test data is not known. We therefore draw a distinction in this
thesis between work which is interested only in improved performance on a test set from
a known domain, and work which aims to incorporate information from a certain training
domain without loss of generalizability.

Most existing work on domain-specific language processing treats the domain of test
language as known. This may be true in limited scenarios, such as shared tasks from the
WMT machine translation conference where the topic or genre of text is pre-specified, or
bespoke translation systems adapted to customer data. Many effective techniques have been
developed for this known-domain scenario. For example, a recent and popular genre of
work focuses on pre-training extremely large language models and then fine-tuning a set of
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dedicated parameters on a smaller set of data for a fixed task (Devlin et al., 2019; Radford
et al., 2019).

However, even in these known-domain settings, knowledge of domain label or provenance
may not be as useful as it seems. A domain label applied to a corpus may not be representative
of all sentences in that corpus. For example, this thesis might be labelled as a document from
the technical or scientific domain, but that label would be completely unsuitable for sentences
from the acknowledgements section. In a very general case, source sentences supplied to a
freely available online translation system could come from any source and contain features
of any domain.

Our focus is this more general case of multi-domain translation. Here a system may be
required to translate language in a specified domain of interest, but it is not known that it
will only be translating text relating to that domain. The translation system must therefore
incorporate robustness to different domains.

This thesis therefore explores techniques for adaptation that can incorporate the benefits of
a new domain without succumbing to brittleness, over-fitting, or general failure to successfully
translate anything other than a chosen set of adaptation sentences. Techniques for multi-
domain adaptation can involve data selection and curriculum, model parameter adaptation
procedure, or choices made during inference. Moreover, we explore the extent to which some
data-representation or data-selection focused schemes for improving machine translation can
also be framed as individual ‘domains’ or benefit from multi-domain translation techniques.

1.1.1 Research questions

In this thesis we address five broad research questions around the topic of multi-domain
adaptation for NMT. Here we introduce and motivate these questions.

How effective are data-centric approaches to NMT domain adaptation?

Early approaches to NMT adaptation involve training a general domain system, then fine-
tuning the model on in-domain data (Luong and Manning, 2015). The adaptation data may be
selected or generated in many different ways. It may be presented to the model as a distinct
training phase, or it may be gradually incorporated into training, mixed with data from the
general domain. We view these as purely data-centric approaches, in that the design choices
revolve around the new data or its introduction.

Data-centric approaches remain the dominant approach to NMT adaptation, possibly due
to their simplicity. We wish to assess their effectiveness for robust NMT domain adaptation,
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especially in multi-domain scenarios. We also wish to identify any undesirable side-effects
of such approaches.

Given an adaptation dataset, what training schemes might improve machine transla-
tion quality?

Approaches to NMT domain adaptation typically require some in-domain data. However,
low-resource domains and language pairs may have very little data available for adaptation.
In such cases, we wish to explore model parameter adaptation procedures that make the best
use of the available data, while avoiding any undesirable side-effects of adapting to very
small data-sets.

Can domain adaptation help when the test domain is unknown?

As described above, in a realistic scenario the domain of a new test sentence is unlikely to be
predictable. The test set may also lack a convenient corresponding validation set. We wish to
explore techniques that allow high-quality domain-specific machine translation in scenarios
where the exact domain of a test sentence is not pre-determined.

Can changing data representation have similar effects to changing data domain?

A separate line of NMT research to domain adaptation concerns the way text is represented for
translation purposes. Different levels of word or sub-word decomposition, or the presence of
non-text tokens such as part-of-speech (POS) tags, may provide different translation benefits
in various scenarios (Ding et al., 2019; Sennrich and Haddow, 2016). Drawing an analogy
with multi-domain translation, we wish to investigate situations which benefit from more
than one data representation, and techniques which benefit the resulting multi-representation
NMT.

Can gender bias in NMT systems be mitigated by treating it as a domain?

Recent research has identified that NMT models exhibit unhelpful correlations between
human-referent gendered terms. This behaviour is generally referred to as NMT gender bias
(Alvarez-Melis and Jaakkola, 2017). We wish to know the extent to which this can be viewed
as domain-specific translation behaviour, and correspondingly the extent to which domain
adaptation techniques can be used to mitigate gender bias effects in NMT.
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1.2 Contributions

We describe the specific contributions of this thesis, many of which have previously been
described in reviewed publications:

• We show that simple, data-based domain adaptation to new domains can be very
effective in scenarios where the domain is known and the adaptation data closely
related to the general and test domain (Saunders, Stahlberg, and Byrne, 2019).

• However, we demonstrate that adaptation when the test domain is unknown can lead
to imperfect adaptation or catastrophic forgetting, which we propose addressing with
regularized training (Saunders, Stahlberg, de Gispert, et al., 2019; Stahlberg, Saunders,
de Gispert, et al., 2019).

• More subtly, domain mismatch between adaptation and test data can lead to exposure
bias effects. We develop a more robust form of Minimum Risk Training (MRT), which
reduces these effects (Saunders and Byrne, 2020a; Saunders, Stahlberg, and Byrne,
2020).

• We extend Bayesian Interpolation with source information and apply it to NMT
decoding with models on multiple individual domains, adaptively weighting ensembles
without relying on test domain labels. Our scheme out-performs the ‘oracle’ case
where the test domain is known (Saunders, Stahlberg, de Gispert, et al., 2019), and can
be smoothed for additional robustness (Saunders, Stahlberg, and Byrne, 2019).

• We demonstrate that using different source representations of the same data at training
and inference time can give improvements for both higher- and lower-resource domains
when translating between linguistically distant languages (Saunders, Feely, et al.,
2020).

• We show that models trained on different target language representations of the same
data can have complementary attributes reminiscent of models trained on different
domains, and develop a method for combining such models in an ensemble (Saunders,
Stahlberg, de Gispert, et al., 2018; Stahlberg, Saunders, Iglesias, et al., 2018).

• We frame the task of countering gender bias effects in NMT as a domain adaptation
problem, and apply various domain adaptation techniques to improve the situation
(Saunders and Byrne, 2020b; Tomalin et al., Under review).
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• We highlight some particular difficulties in NMT relating to gender bias, in that
even apparently successful bias-reduced NMT systems over-generalize from available
information. We propose introducing word-level tags during fine-tuning to improve
matters (Saunders, Sallis, et al., 2020).

1.3 Structure of the thesis

This thesis begins with a review of relevant prior work. Chapter 2 introduces NMT with a
summary of popular approaches in four specific categories: translation data, model architec-
ture, training procedure and inference procedure. Chapter 3 describes what is meant by a
domain in this thesis, then provides a thorough overview of approaches to domain adaptation
for machine translation in the same four categories explored in Chapter 2. The literature
review concludes with a summary of the gender bias problem in NMT, which we frame as a
domain adaptation problem.

The remainder of the thesis presents original work. Chapter 4 includes some initial
experiments on data selection and curricula for translation domains. We emphasize the
advantages of data-centric approaches to NMT domains, as well as demonstrating some
inherent disadvantages, such as exposure bias and over-fitting to a narrow domain, which are
addressed in the following two chapters. Chapter 5 presents our investigations into parameter
adaptation schemes for NMT fine-tuning, applying regularization techniques to address
over-fitting and catastrophic forgetting, and developing a robust discriminative training
scheme that can address exposure bias. Chapter 6 presents our work exploring multi-domain
ensembling, combining multiple different-domain models in a domain-adaptive manner at
inference time.

We conclude with two case studies on our own work. Both highlight the potential benefits
of applying multi-domain adaptation techniques to aspects of NMT not typically considered
to be domains. In Chapter 7 we consider different data representations for translation between
English and more linguistically distant languages, and show that considerations typically
made for domain adaptation can be useful, especially at inference time. In Chapter 8 we
frame the task of mitigating the effects of gender bias in NMT as a domain adaptation
problem, applying data, adaptation and inference techniques from throughout the rest of the
thesis to address the problem. Conclusions are given in Chapter 9.

Much of the original work in this thesis has previously been published in reviewed
conference or workshop proceedings: a list of relevant publications is given in Appendix A.





Chapter 2

Neural machine translation: a review

In this chapter we review recent developments in Neural Machine Translation (NMT). While
research in the field has expanded hugely in recent years, we focus particularly on approaches
which lay the groundwork for experiments in this thesis.

Machine Translation (MT) seeks to automatically translate written text between natural
languages, from a source language to a target language. Originally accomplished with
statistical MT (SMT) techniques consisting of word- and phrase-based frequency models,
state-of-the-art performance in high-resource language pairs like English-German has been
achieved by NMT since 2016 (Bojar, Chatterjee, et al., 2016). More recently Sennrich and
Zhang (2019) have shown that with appropriate settings, NMT can outperform SMT on
low-resource language pairs as well.

We structure this review chapter to correspond to the process of developing and applying
an NMT model. First, training sentences in source and target languages must be represented
as sequences of tokens in a fixed vocabulary (Sec. 2.1). An NMT model architecture must
also be determined (Sec. 2.2). Training can then take place, where the model parameters are
adjusted according to a training objective and training examples (Sec. 2.3). Finally, inference
can be performed using a trained NMT model to translate previously unseen sentences (Sec.
2.4).

2.1 Representing language for NMT

Typically NMT models take as a single training example a sequence of tokens x representing
a source language sentence and a sequence of tokens y representing the corresponding target
language sentence.

These tokens are presented to the neural network as integer IDs ∈ V where V is the
corresponding source or target vocabulary. Depending on modelling choices, a token may
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represent a word, a subword unit, or a character. Alternatively it may represent some other
feature of the sentence, such as an element of its syntactic parse tree.

The language representation must be chosen with two goals in mind:

• Conveying information about the sentence pair that is useful for translation.

• Staying within practical constraints on the size and computation available for training
and storing the NMT model.

The first goal could be met by representing every unit of the surface text in a unique way.
Unknown or out-of-vocabulary (OOV) words would detract from this.

The second goal may be met by reducing the computational demand of the text represen-
tation. Extremely large vocabulary sizes or very long sentence representations would detract
from this.

These goals are often at odds. For example, an extremely large word vocabulary might
have few or no OOV terms, but involve large computational demands. In this section we
explore approaches taken to balance these goals when representing language for neural
translation models.

2.1.1 Word vocabularies

An NMT network vocabulary is typically limited to tens of thousands of tokens. This is
primarily due to the computational complexity of the softmax which is used to map word
embeddings to discrete tokens (Sec. 2.2). Early approaches to NMT determine source and
target language vocabularies by identifying all unique words in the respective training sets
and ordering them by occurrence frequency. The model source vocabulary is then typically
the top |V | source words by frequency (Cho, van Merriënboer, Gulcehre, et al., 2014) or
all words appearing more frequently than some pre-determined cut-off (Kalchbrenner and
Blunsom, 2013), and likewise for a separate target vocabulary. Any out-of-vocabulary (OOV)
words are typically represented by a special UNK token.

Extremely large word vocabularies are possible under such approaches using a hierarchi-
cal approximation to the expensive softmax operation (Jean, Cho, et al., 2015). Nevertheless,
OOV words are inevitable. New domains may use vocabulary very distinct from training data,
existing words may be differently inflected or compounded, and new words will be conceived
(Kornai, 2002). Word-based NMT models must therefore have strategies for encountering
OOVs.

A translation containing UNK tokens can immediately be improved by replacing these
tokens with correct target language words. Consequently, word-based NMT relies heavily on
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rare word replacement techniques (Jean, Firat, et al., 2015; Li, Zhang, et al., 2016; Luong,
Sutskever, et al., 2015). Rare word replacement involves first identifying the source word
corresponding to the output UNK with some form of alignment model or labelling system, and
next replacing the UNK with a better translation. This translation could be from an external
lexicon, or could simply be the source word itself - particularly useful for named entity
translation in which source words may be copied directly to the target.

2.1.2 Subword vocabularies

Multi-character subword vocabularies

A drawback of word vocabularies is their inherent treatment of all words as distinct, unrelated
entities. In reality this is not always the case. For example, morphologically rich languages
like Hebrew may have many words which are inflections of some root word, and agglutinative
languages like Turkish contain compounds formed of many other words.

Another weakness of word-level vocabularies is sparsity. Zipf’s law states that the
occurrence probability of a word is inversely related to its vocabulary rank (Zipf, 1949),
meaning a large proportion of vocabulary words in a language occur very rarely in a given
corpus. Representing each of these rare words as a unique vocabulary item is therefore
inefficient. It also may not allow good learned representations, since individual vocabulary
items are seen infrequently during training.

Subword vocabularies address these weaknesses. They allow compound or inflected
words to share component subwords, conveying their relatedness. They also represent
individually rare terms as sequences of shorter segments, allowing a denser and more
efficient vocabulary representation.

Sennrich, Haddow, and Birch (2016d) first propose NMT on sequences of multi-character
subword units obtained using the Byte Pair Encoding (BPE) algorithm (Gage, 1994). A BPE
vocabulary is initialized with every character appearing in the training data, and all words
represented as character sequences. Word endings are marked with a special character, or
all words may be separated with a special character as in the WordPiece variation proposed
by Wu, Schuster, et al. (2016). The BPE algorithm proceeds by counting all token pairs
and iteratively merging the most frequent pair to produce a new token. Very frequent words
eventually become single tokens, as they would in a word-based vocabulary. Unseen words
can in the worst case be represented as character sequences. BPE vocabularies can be learned
separately for the source and target language, or a joint vocabulary can be learned on both
languages together. The latter is useful for translating between related languages which are
likely to share cognates, such as the English-German language pair.
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Alternative schemes for multi-character subword vocabularies have been proposed, based
on syllables (Assylbekov et al., 2017), language model scores (Kudo, 2018) or linguistically-
informed word segmentation (Ataman et al., 2017; Huck, Riess, et al., 2017; Macháček et al.,
2018). However, frequency-based BPE decomposition has become broadly accepted as an
effective default vocabulary scheme for NMT.

More recent work on subword vocabularies has attempted to improve NMT robustness
by optimizing BPE granularity. Ding et al. (2019) find that smaller numbers of subword
merges give better performance for low-resource language pairs, as in a low-resource domain
segmentation must be more aggressive for individual subwords to remain frequent. Gallé
(2019) and Salesky et al. (2020) similarly find that BPE is most effective when giving set
coverage with high-frequency subwords while keeping the overall sequence lengths short.

We note that BPE only allows truly open vocabulary translation if all possible characters
are represented in the training data, including the many tens of thousands of characters that
are representable by the Unicode standard (Needleman, 2000). In practice very high character
coverage can usually be achieved for individual languages, especially using character normal-
ization (Kudo and Richardson, 2018). A recently proposed byte-level subword scheme has
the ability to represent any Unicode character, and has been shown to perform comparably to
regular BPE while allowing complete vocabulary sharing across languages for multilingual
models (Wang, Cho, et al., 2019).

Character vocabularies

An extremely aggressive subword segmentation scheme represents words and sentences as
sequences of individual characters. A character vocabulary with full character coverage
can represent any unknown word, as with BPE. However, the character vocabulary has the
advantage of being smaller than a BPE vocabulary. Early attempts at character-based NMT
involved additional network elements to combine information from characters in the same
word (Costa-jussà and Fonollosa, 2016; Johansen et al., 2016; Kim, Jernite, et al., 2016; Ling
et al., 2015). Luong and Manning (2016) use character-based networks only for OOV words,
outperforming contemporary OOV-replacement strategies (Jean, Firat, et al., 2015)

Later approaches explore segmentation-free character NMT (Chung et al., 2016; Lee,
Cho, et al., 2017) or byte NMT, which is similarly motivated but extensible to multilingual
translation (Costa-jussà, Escolano, et al., 2017). This approach is particularly beneficial for
languages with no inherent word boundaries, like written Chinese. Such languages must be
segmented before word- or subword-based NMT. For languages with word segmentation
NMT quality is still sensitive to punctuation tokenization (Domingo et al., 2018), which is
less relevant for character-based NMT.
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A drawback of character-based sentence representations is their length. This sentence
contains only fourteen word tokens but nearly six times as many characters. Increasing
sequence length increases computational requirements during training, and exponentially
increases the space of possible translations to be explored during decoding. Deeper models
or compression mechanisms can mitigate the quality effect, but addressing the computational
cost remains challenging (Cherry et al., 2018).

Another disadvantage of character-based NMT is that characters representing syllables
(e.g. Japanese kana) or phonemes (e.g. the Roman alphabet) do not usually correspond to
words or morphemes. Exceptions include grammatical particles or other single-character
words, but the number of exceptions is necessarily limited by the alphabet’s size, normally
tens of characters. Character-based NMT may therefore not enable efficient translation of
meaning for languages with such alphabets.

Sub-character vocabularies

Alphabetic or syllabic alphabets are typically small and their characters do not usually
convey semantic meaning. By contrast logographic alphabets like Chinese may have tens of
thousands of logograms: characters representing one or more words, morphemes or concepts
as well as conveying pronunciation. Treating logograms as units of meaning is therefore
reasonable. However, logograms are extremely sparse: the Chinese character frequency
distribution falls below that predicted by Zipf’s law (Shtrikman, 1994). Inevitably some
logograms will be rare or not present in the training data.

Many logograms share sub-character components called radicals. Early Chinese dictio-
naries identify just 214 radicals, each carrying semantic meaning, where the most frequent
10 radicals account for over ten thousand traditional Chinese characters (Mei, 1615; Yushu,
Tingjing, et al., 1716). An intuitive approach to the logogram sparsity problem in natural
language processing (NLP) uses the radical decomposition in the task. This has been shown
to help incorporate a semantic component into character embeddings (Sun, Lin, et al., 2014)
and to improve language modelling (Nguyen, Brooke, et al., 2017). Sub-character decompo-
sition has also been applied to sentiment classification (Ke and Hagiwara, 2017), with mixed
results (Karpinska et al., 2018).

Sub-character work in NMT has focused on use of shared radicals to improve Chinese-
Japanese NMT (Zhang and Komachi, 2019; Zhang and Komachi, 2018). Such work typically
uses radicals as analogy with characters in an alphabetic writing systems, decomposing all
logograms and learning BPE vocabularies over radicals instead of over the logograms. This
pre-supposes that all logograms benefit from decomposition. In Sec. 7.2 we demonstrate
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that this is not necessarily the case for more distant language pairs, and discuss our own
approaches to the problem of logographic character coverage (Saunders, Feely, et al., 2020).

2.1.3 Syntactic representations and tags

The language representations discussed so far have represented sentences simply in terms of
language granularity: words, subwords, characters and sub-characters. A separate approach is
augmenting source or target sequences with elements not present in the surface representation
of the original sentences. Common examples are syntactic annotations or externally-defined
tags.

Various forms of syntactic annotation have been incorporated into NMT: inflection
agreement models (Green and DeNero, 2012), Combinatory Categorial Grammar (CCG)
tags (Nadejde et al., 2017; Zhang and Clark, 2011), Part-of-Speech (POS) tags and syntactic
dependency labels (Sennrich and Haddow, 2016), lemmas with morphological features
(Tamchyna et al., 2017) and linearized constituency parses (Aharoni and Goldberg, 2017;
Currey and Heafield, 2019). In Sec. 7.3 we explore some of these schemes and suggest some
practical considerations for training and conducting inference with such representations.

Another way to augment a source or target sequence is with tags, which can be used
to indicate a particular feature of the sentence. Previous work has used tags to convey the
domain of a sentence (Kobus et al., 2017), the gender of a speaker (Vanmassenhove et al.,
2018), target language formality (Feely et al., 2019; Sennrich, Haddow, and Birch, 2016a)
and whether to translate a word using custom terminology (Dinu et al., 2019). Such work
typically incorporates tags into all NMT data from the start of training, implicitly requiring
the availability of reliable tags for all training data. In Sec. 8.5, by contrast, we explore the
introduction of tags during adaptation for fine-grained control of translated gender inflections.

2.1.4 Representing document context

There has been much recent interest in including context in NMT language representations
outside of the source or target sequence, such as the previous source sentence (Tiedemann,
Scherrer, et al., 2017) or even providing whole document context (Junczys-Dowmunt, 2019;
Macé and Servan, 2019). Early attempts to incorporate the previous source sentence into
recurrent NMT showed potential improvements in terms of BLEU score (Wang, Tu, et al.,
2017) or cross-lingual pronoun prediction (Jean, Lauly, et al., 2017). However, more recent
investigations into document-level NMT with stronger self-attention baselines has given
results that are as yet inconsistent (Stahlberg, Saunders, de Gispert, et al., 2019), although
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they may be applicable in scenarios such as lexical cohesion or anaphora resolution (Voita,
Sennrich, et al., 2019; Voita, Serdyukov, et al., 2018).

Kim, Tran, et al. (2019) demonstrate that improvements from document-level NMT may
not even be interpretable as use of extra-sentence context, but that the extra context may
simply provide a regularization effect. Moreover, they show that context-specific information,
such as topic for lexical choice, can be retained in very minimal forms – effectively as
individual tags – rather than necessitating encoding an entire additional sentence or document.
For these reasons we focus on sentence-level translation in this thesis, although in Sec. 5.3
we explore ways to incorporate mini-batch level ‘context’, whether from a real document or
not, into NMT training objectives.

2.2 Neural translation model architecture

Section 2.1 discussed various ways sentences can be represented for NMT, whether as
sequences of words, subwords, or characters, or as linearized parse trees. In this section we
treat all source sequences x and target sequences y as simply sequences of integer values.

The NMT model input is a sequence of these integers:

x = x1, ...,xI,xi ∈Vsrc (2.1)

And the NMT model must produce a sequence of integers:

y = y1, ...,yJ,y j ∈Vtrg (2.2)

In this thesis we follow the terminology of Cho, van Merriënboer, Gulcehre, et al. (2014)
in referring to the subnetwork which maps from x as an encoder, and to the subnetwork
which maps to y as a decoder. We refer to the phase of updating neural network parameters
given x and y as training, and the phase where parameters are fixed and new hypotheses are
generated without reference tokens y as inference. We refer to the more general process of
producing a sequence with the decoder as decoding whether or not y is available.

We therefore seek a neural network that can learn a mapping between x and y which
generalizes to unseen x during inference. Many neural network architectures are capable of
this. In this section we discuss the development of architectures that have become widely
used for NMT in recent years.
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2.2.1 Continuous word embeddings

The first stage in an NMT model is mapping a sequence of integers x ∈Vsrc to a continuous
representation of each integer known as a word embedding. Vocabulary sizes |V | for standard
NMT models are typically > 10K. A |V |-dimension ‘one-hot’ representation of a single
vocabulary item is too large for neural network operations to be tractable on potentially
thousands of words per mini-batch of sentences. Moreover, one-hot representations are
discrete: the effect of changing a single word does not necessarily generalize to the effect of
changing other words.

For these reasons Bengio, Ducharme, et al. (2003) proposed associating each vocabulary
word with a continuous word feature vector, also known as a word embedding. These are a
more tractable size: d where typically d ≤ 1024. An embedding matrix W ∈ R maps from
|V | discrete dimensions to d continuous dimensions. Parameters of W are learned by error
back-propagation.

Word embeddings can be learned using various context-based objectives. For example,
Bengio, Ducharme, et al. (2003) map a sequence of word embeddings to a conditional
probability distribution for the next word over words in V , and Collobert and Weston (2008)
use the context of a word to predict the word itself. These formed early neural language
models (LMs) which could be used as translation models (Le et al., 2012) and language
models (Schwenk, 2012) for phrase-based SMT systems.

The dimension d embeddings trained for such objectives may exhibit local smoothness
and therefore generalize: that is, words with similar sequence contexts will tend to have simi-
lar continuous representations (Collobert and Weston, 2008; Turian et al., 2010). Later work
shows that word embeddings trained with context-related objectives can encode semantically
meaningful results. Words have similar embeddings if they belong to the same category, for
example if both are countries or colours (Collobert, Weston, et al., 2011; Mikolov, Sutskever,
et al., 2013). The vector difference between pairs of word embeddings may also encode
relationships between those words (Mikolov, Corrado, et al., 2013).

2.2.2 Sequence encoders

Neural networks that learn word embeddings from context as described in Sec. 2.2.1 must
involve a sequence encoder. A sequence encoder is a subnetwork which encodes information
about an input sequence of tokens, as opposed to a single input token. For example, neural
LMs as described above effectively encode a sequence of input word embeddings as a
sequence embedding. The probability distribution for the next output word is then conditioned
on this sequence embedding.
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Early work used feed-forward neural networks to learn sequence embeddings for language
processing tasks. However, feed-forward models are inherently limited in the length of
sequence they encode. For a feed-forward LM with encoding dimension n, word probabilities
are conditioned on an n-gram sequence embedding, rather than whole-sentence context. A
sequence embedding conditioned on all available context is more useful, particularly for
translation, where the correct output can be affected by long-range dependencies between
source words.

Convolutional and recurrent sequence encoders

Sequence embeddings which do not require a fixed-length input sequence can be encoded
using Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs.) A
CNN applies a sliding filter window to a variable-length sequence of word embeddings,
generating features which can be combined hierarchically to produce a fixed-length sequence
embedding. However, the convolutional approach alone typically loses word-ordering infor-
mation unless it is explicitly reintroduced (Kalchbrenner and Blunsom, 2013; Kalchbrenner,
Grefenstette, et al., 2014; Socher et al., 2011).

RNNs have been more frequently used to encode sequences for NLP (Mikolov, Karafiát,
et al., 2010; Sutskever, Martens, et al., 2011; Sutskever, Vinyals, et al., 2014). A standard
RNN maintains a hidden state h, which may be initialized as a zero vector or by random
sampling (Zaremba et al., 2014). At each step t through input sequence x, h is updated:

ht = f (W|h||h|ht−1 +W|h||x|xt),where f ∈ {sigm, tanh} (2.3)

Here Wab are parameter matrices mapping from b dimensions to a dimensions which are
learned using gradient back-propagation through time (Rumelhart et al., 1986; Werbos, 1988).
We use |h| as notation for the size of embedding h. The end of the sequence is marked by
a special end-of-sentence (EOS) token. After the whole sequence of T inputs is seen hT

embeds the whole of x, since hT has a recurrent dependence on all previous inputs.
Error gradients must be backpropagated through each step of the input to train the RNN.

This causes problems as T becomes large. Repeated products of very large long-distance
gradient contributions may grow exponentially larger than local gradient contributions.
Conversely, repeated products of small long-distance gradient contributions may vanish
(Bengioy et al., 1994). Weight regularization or gradient clipping can mitigate the exploding
gradient problem (Mikolov, 2012; Pascanu et al., 2013). Long short-term memory cells
(LSTMs, Hochreiter and Schmidhuber (1997)) and gated recurrent units (GRUs, Cho, van
Merriënboer, Gulcehre, et al. (2014)) have been introduced to avoid the vanishing gradient
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problem as RNN variants that ‘adaptively remember and forget’ with reset and update
operations.

Reverse and bidirectional sequence encoders

The state of an LSTM is in principle affected by past inputs across arbitrarily long-distance
‘time lags’ from the current input. However, experiments by Sutskever, Vinyals, et al. (2014)
suggest the RNN state is most strongly affected by the most recent inputs. They propose the
simple alternative of embedding the source sentence right-to-left, starting with the final word,
which they find improves NMT results.

A related problem is that RNNs can only model arbitrarily long sequential relationships
in one direction. One proposed solution is the Bidirectional RNN (BiRNN, Schuster and
Paliwal (1997)), which has had particular impact on NMT (Bahdanau, Cho, et al., 2015). A
BiRNN reads the source sentence in two passes of Eq. 2.3: a forward pass from first to last
token and a backwards pass from last to first, producing two sets of encodings. The overall
state ht at source sequence position t is found by concatenating the corresponding states from
both passes. This state then has a strong dependence on the tokens immediately preceding
and following xt .

2.2.3 Sequence decoders

A sequence decoder is a sub-network which generates a sequence of discrete tokens condi-
tioned on a sequence embedding (Sec. 2.2.2). In NMT, the generated output is a translation
hypothesis that is conditioned on an input sentence representation. The decoder may also be
conditioned on an output sequence representation. During training this is usually the refer-
ence sentence. During inference the reference is not available, so the decoder is conditioned
on its own hypothesis translation.

The decoder output is fed through a softmax which produces a probability distribution
over tokens in Vtrg. During inference the discrete model output ŷ j can then be chosen
according to an inference algorithm. A common and fast choice is the greedy approach,
which selects the most probable output token given the distribution. Different approaches are
discussed in Sec. 2.4.

Recurrent decoders

An early NMT sequence decoder proposed by Sutskever, Vinyals, et al. (2014) consists
of an LSTM RNN with hidden state s. Input y j−1 consists of a reference token during
training, and the previously generated token ŷ j−1 during inference. Initial input y0 is a special
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beginning-of-sentence (BOS) token. Initial state s0 is set to the source sequence embedding
hT found by the encoder in Eq. 2.3. A single decoding step takes place as follows:

sj = f (U|h||h|sj−1 +U|h||y|y j−1),where f ∈ {sigm, tanh} (2.4)

p(ŷ j|x,y1: j−1) = softmax(U|y||h|sj) (2.5)

Decoding terminates when the EOS symbol is produced. As in Eq. 2.3 Uab are parameter
matrices mapping from b dimensions to a dimensions. If the source and target vocabularies
are shared, these parameters may be the same as the corresponding Wab matrices from the
encoder.

Cho, van Merriënboer, Gulcehre, et al. (2014) propose a similar RNN decoder based on
GRUs. Their hidden state update is additionally a function of a context vector c, which they
set as the source sequence embedding hT. This allows conditioning on the input sentence
directly instead of via the decoder’s recurrence:

sj = f (sj−1,y j−1,c) (2.6)

They also propose a size m maxout pooling operation in the computation of the output from
the decoder hidden state (Goodfellow et al., 2013):

p(ŷ j|x,y1: j−1) = softmax(U|y|mmax(Um|h|sj)) (2.7)

Attention-based recurrent decoders

The decoder of Eq. 2.6 maintains a direct dependence on the initial sequence embedding via
c, but must still encode all information from a variable-length source sentence into a single
fixed-size embedding. Cho, van Merriënboer, Bahdanau, et al. (2014) observe that, for a
straightforward RNN-based encoder-decoder network, translation quality decreases as source
sentence length increases. As discussed in Sec. 2.2.2, sequence embeddings from t steps
through a recurrent encoder are strongly affected by inputs from locations near t and tend to
lose contributions from distant inputs. They may therefore fail to adequately represent the
whole source sentence.

An alternative approach is an attention-based decoder, which to the best of our knowledge
was first applied to NMT by Bahdanau, Cho, et al. (2015). This approach uses the decoder
architecture described in Eqs. 2.6 and 2.7 but calculates the context vector cj for each decoder
time-step j via an attention mechanism. Using the later formalism of Vaswani, Shazeer, et al.
(2017), given a query Q and a mapping of key-value pairs K and V , an attention mechanism
returns V weighted by some ‘score’, which is a similarity function between Q and K.
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c j = softmax(score(Q,K))V (2.8)

Bahdanau, Cho, et al. (2015) store all forward-backward states of a BiRNN source
sentence encoding, {h1, ...,hT}, and set V as a T ×|h| matrix where Vt = ht . They further
define K = V and Q = s j−1, and use a feed-forward network as the score(.) function.
Because ht is most strongly affected by source token xt , the attention mechanism weights
softmax(score(Q,K)) ∈ [0,1] act as a soft alignment model, indicating the importance of
source token xt for producing c j and consequently for producing target output y j.

Luong, Pham, et al. (2015) explore variations on this attention mechanism. They set
Q = s j – applying alignment after the decoder state update – and experiment with ‘local’
attention, in which Vt is down-scaled if t is far from j. They also use a dot-product score
function:

score(Q,K) = QKT (2.9)

This can be implemented more efficiently than the feed-forward network of Bahdanau,
Cho, et al. (2015) as the dot product relies only on matrix multiplication, not an additional pa-
rameterized network. Both Bahdanau, Cho, et al. (2015) and Luong, Pham, et al. (2015) find
that attention mechanisms improve translation performance on long sentences in particular.

2.2.4 Purely attention-based encoder-decoder networks

Recurrent encoder-decoder models necessarily involve sequential calculation for a given
training example. Such calculations cannot be parallelized, introducing a bottleneck on
training time as sequence lengths increase. To improve NMT parallelizability Vaswani,
Shazeer, et al. (2017) propose the Transformer model, a purely attention-based architecture
without recurrence.

The Transformer network achieved strong improvements in parallelizability and perfor-
mance over RNN-based models, and remains state-of-the-art for NMT at the time of writing.
Experiments in the remainder of this thesis therefore use the Transformer model architecture
as described here, unless stated otherwise.

Transformer attention and self-attention

The Transformer uses encoder-decoder attention as in Sec. 2.2.3 to relate K and V from the
encoder output to Q from the decoder state. However, where recurrent models determine
source and target sequence representations with sequential calculations, the Transformer
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model relies purely on self-attention for these representations. This improves speed and
parallelizability.

The attention mechanism described in Sec. 2.2.3 related different positions in different
sequences in order to learn a ‘context representation’. Self-attention instead relates different
positions in a single sequence in order to calculate that sequence’s representation. A self-
attention embedding is determined as in Eq. 2.8, where Q, K and V are all projected from the
same sequence. That sequence consists of source embeddings x at the input to the encoder,
target embeddings y at the input to the decoder, or the output of the previous layer in a
multi-layer encoder / decoder (Sec. 2.2.5).

Use of self-attention has some practical implications. In the decoder, the output of the
self-attention score function is masked to −∞ before the softmax for any positions > j to
prevent the decoder from attending to future target tokens. The Transformer model uses a
scaled dot-product attention score function: this is the dot-product score of Eq. 2.9 scaled
down by the embedding dimensionality, |h| 1

2 . Finally, self-attention does not convey the
absolute position of a token in a sequence as recurrent encodings do. Vaswani, Shazeer, et al.
(2017) reintroduce this information using positional embeddings. These are functions of
token position which can be added to the token embeddings directly. Positional embeddings
can be determined through pre-defined functions or learned jointly with the rest of the
network.

Multi-head attention

So far, attention mechanisms have been described in terms of a single attention function
with the same dimensionality |h| as Q, K and V . For the Transformer model, Vaswani,
Shazeer, et al. (2017) instead propose multi-head attention. Multi-head attention projects
the attention on each input H times with H different attention ‘heads’, each attending to a
different Q, K and V of dimensionality |h|

H . The attention head outputs are concatenated into
a dimensionality |h| multi-head attention embedding which can represent joint attention on
different positions in the same sequence.

2.2.5 Multi-layer networks

NMT models generally follow an encoder-decoder architecture. Each encoder or decoder
discussed so far – recurrent, convolutional, self-attention-based – may be implemented as a
multi-layer network. For example, the Transformer as described in Vaswani, Shazeer, et al.
(2017) has an encoder and decoder each composed of a stack of 6 identical layers. Each layer
carries out its operation (e.g. self-attention) on the output of the layer before. The final layer
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in the encoder is used as input to the decoder, and the final layer in the decoder is used to
produce the output.

In principle multi-layer networks are capable of learning more fine-grained language
representations than single-layer networks, simply because they have more parameters. In
practice multi-layer networks are susceptible to training difficulties since objective function
gradients must be propagated through more layers.

A common way to improve gradient propagation is adding residual networks around each
layer – that is, the output of a layer f (z) becomes f (z)+ z (He et al., 2016). Each layer in the
encoder or decoder subnetwork then has access to the original subnetwork input. Residual
connections have been found to be necessary when training deep recurrent models (Britz,
Goldie, et al., 2017) and Transformer models (Chen, Firat, et al., 2018).

A related challenge is that the gradients of weights in a layer may become strongly
correlated with the gradients of a previous layer. Known as Internal Covariate Shift (ICS),
this correlation makes convergence challenging as training proceeds, since parameter change
towards convergence in one layer may disturb parameters away from convergence in sub-
sequent layers (Ioffe and Szegedy, 2015). Techniques proposed to avoid ICS include batch
normalization (Ioffe and Szegedy, 2015) and layer normalization (Ba et al., 2016). While
there is some debate over whether these techniques really address ICS (Santurkar et al.,
2018), layer normalization is used around layers in Transformer models (Vaswani, Shazeer,
et al., 2017) and has found to be necessary for training large Transformer models (Chen,
Firat, et al., 2018).

When such architectural ‘tricks’ are applied, deep models have been shown to outperform
equivalent shallower models for NMT in some settings (Wang, Li, et al., 2019). These
techniques effectively move the bottleneck on model size towards constraints such as memory
footprint and training time. However, we do not consider model depth a panacea, and note
that recent work has in some cases found better performance for shallower models, especially
for low-resource translation (Nguyen and Chiang, 2018; Sennrich and Zhang, 2019).

2.3 Training NMT models

Once an NMT model architecture has been determined as in Sec. 2.2, its parameters must
be adjusted so as to produce a mapping between source sequences x and target sequences y.
NMT model parameters are trained by backpropagation (Rumelhart et al., 1986), typically
using some form of Stochastic Gradient Descent (SGD) optimizer. These gradients must be
determined for some objective on the training data.



2.3 Training NMT models 21

Standard training objectives, such as cross-entropy loss, use both the source sentence and
reference sentence during training. However, during inference only the source sentence and
the prefix of the model’s own hypothesis ŷ are available. An auto-regressive sequence decoder
therefore experiences a discrepancy between conditioning during training and inference,
commonly known as exposure bias (Bengio, Vinyals, et al., 2015; Ranzato et al., 2016).
The need to improve performance while avoiding exposure bias has motivated alternative
objectives and regularization methods.

In this section we explore several objective and regularization functions that have proven
popular for training NMT models, as well as other factors that influence training such as
choice of optimization algorithm and minibatch size.

2.3.1 Objective functions

Cross-entropy loss

Since early development of neural networks trainable by gradient descent (Rumelhart et al.,
1986), it has been proposed that a generalizeable approach to neural network training is
varying weights θ in the gradient direction of the log likelihood in order to maximize the log
likelihood of training examples (Baum and Wilczek, 1988; Levin and Fleisher, 1988). This
is known as Maximum Likelihood Estimation (MLE).

θ̂ = argmax
θ

logP(y|x;θ) (2.10)

MLE is equivalent to minimizing the cross-entropy loss LCE between the generated
output distribution and the target sequences where there is a single ground-truth label
q(y′ = y j|x;θ) = δ (y j) for each token:

θ̂ = argmin
θ

|y|

∑
j=1

− logP(y j|y1: j−1,x;θ) = argmin
θ

LCE(x,y;θ) (2.11)

Continuing from this early work in effective neural network training, the majority of
end-to-end NMT models minimize the cross-entropy loss as an objective function.

Minimum risk loss

As discussed in the opening of this section, MLE training is susceptible to exposure bias.
MLE also experiences loss-evaluation metric mismatch, since it optimizes the log likelihood
of training data while machine translation is usually evaluated with translation-specific
metrics.
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Discriminative training for MT was introduced for phrase-based SMT to bring model pa-
rameter learning objectives in line with evaluation metrics. This was achieved by minimizing
the expected cost of model hypotheses in terms of a translation metric like document-level
BLEU (Papineni et al., 2002), either by scoring across a set of sentences (Och, 2003) or by
considering individual hypothesis contributions to the set (Watanabe et al., 2007).

Shen et al. (2016) extend these ideas to Minimum Risk Training (MRT) for NMT, using
expected minimum risk at the sequence level with a sentence-level BLEU (sBLEU) cost for
end-to-end NMT training. Given N sampled target sequences y(s)n and the corresponding
reference sequences y(s)∗ for the S sentence pairs in each minibatch, the MRT objective is:

θ̂ = argmin
θ

S

∑
s=1

N

∑
n=1

∆(y(s)n ,y(s)∗)
P(y(s)n |x(s);θ)α

∑
N
n′=1 P(y(s)n′ |x(s);θ)α

(2.12)

Hyperparameter α controls the smoothness of the sample probability distribution. Func-
tion ∆(.) measures hypothesis cost ∈ [0,1], typically 1− sBLEU(y(s)n ,y(s)∗), and model
hypotheses are usually generated by auto-regressive sampling with temperature τ .

Edunov et al. (2018a) explore MRT with variations on these settings, using samples
produced by beam search and calculating the sBLEU-based cost between pairs of samples.
Wieting et al. (2019) use MRT for translation with sBLEU and with a sentence similarity
metric. Outside of NMT, MRT has also been successfully applied to summarization (Ayana
et al., 2016), speech recognition (Shannon, 2017), and machine translation post-editing
(Tebbifakhr et al., 2018).

MRT is related to neural reinforcement learning (RL) which aims to directly optimize the
evaluation measure at training time. We give a brief overview of RL approaches that have
been applied to NMT. The actor-critic scheme (Sutton et al., 2000) optimizes over sequence
rewards at each state of producing a hypothesis, and has therefore a natural application to
recurrent NMT models (Bahdanau, Brakel, et al., 2017; Nguyen, Daumé III, et al., 2017).
The Reinforce algorithm described by Williams (1992) aims to maximize a reward metric
for samples from the model distribution and has been incorporated into NMT loss functions
alongside the cross-entropy loss (Ranzato et al., 2016) or alone (Wu, Tian, et al., 2018; Wu,
Zhao, et al., 2017). Reinforce-related approaches have also been applied to other areas of
NLP that are commonly formulated as sequence-to-sequence problems, such as Grammatical
Error Correction (GEC) (Sakaguchi et al., 2017).

MRT is of particular relevance to this thesis due to its property of robustness to exposure
bias, which itself has been shown to be a particular problem if there is a domain mismatch
between adaptation and test data (Müller et al., 2020). This feature of MRT is highlighted by
Neubig (2016), who notes that MRT tends to produce sentences of the correct length without
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needing length penalty decoding, and Wang and Sennrich (2020), who find MRT reduces
exposure bias when the test data domain is very different from the training domain. Due to
these recognized strengths of MRT, we explore it further in this thesis (Sec. 5.3).

2.3.2 Regularization

An alternative approach to exposure bias under MLE is to regularize MLE training1. The
aim is to avoid over-fitting parameter weights to the training set. This can be achieved by
adding a regularization penalty to the MLE loss function.

Output distribution regularization

Log-likelihood maximization as in Eq. 2.11 assumes that a ground-truth label is far more
likely than all other labels. This objective encourages large differences in likelihood between
training examples and language that does not appear during training. This can result in
over-confidence and over-fitting to the training data, reducing the model’s ability to cope
with novel data during inference.

A solution to this problem is to incorporate some level of uncertainty into the distribution
over output labels. Szegedy et al. (2016) propose ‘label smoothing’ (LS) for computer vision
tasks using convolutional networks, which replaces the single target label q(y′|x;θ) = δ (y j)

used to derive Eq. 2.11. Instead the label distribution is smoothed towards a uniform
distribution over the target vocabulary by parameter ε:

q(y′|x;θ) = (1− ε)δ (y j)+
ε

|Vtrg|
(2.13)

The cross-entropy objective function then becomes:

θ̂ = argmin
θ

|y|

∑
j=1

∑
y′∈Vtrg

−q(y′|x;θ) logP(y′|y1: j−1,x;θ) (2.14)

Label smoothing was made popular for NMT by its use in purely attention-based networks
such as the Transformer model (Vaswani, Shazeer, et al., 2017), although it has also been
shown to improve RNN-based NMT performance (Chen, Firat, et al., 2018).

Instead of smoothing the distribution over labels with a uniform distribution 1
|Vtrg| , the

smoothing distribution can come from a teacher model, known as knowledge distillation
(Hinton, Vinyals, et al., 2015). Label smoothing can also smooth towards a unigram dis-

1We consider this as a separately motivated task from regularization during domain adaptation of a pre-
trained model, which is discussed in Sec. 3.4.2.
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tribution over the vocabulary (Pereyra et al., 2017). These schemes effectively incorporate
prior information about the target language distribution. Alternatively, Pereyra et al. (2017)
suggest simply penalizing confident (i.e. low-entropy) output distributions as a regularization
method for NMT among other tasks.

Objective function regularization

Rather than adjusting the ground truth output distribution before applying the loss function, a
regularization term can be added to the loss function itself.

θ̂ = argmin
θ

[LCE(x,y;θ)+λLReg(θ)] (2.15)

One simple case is for LReg is an L2 penalty term, LReg = ∑i θ 2
i . More translation-specific

regularization terms can involve multi-task learning, in which the added loss term is an
objective from another task. Proposed multi-task-related loss terms include a coverage term
to address over- and under-translation (Tu et al., 2016), a right-to-left translation objective
(Zhang, Wu, et al., 2019), the ‘future cost’ of a partial translation (Duan et al., 2020), or a
target language modelling objective (Gülçehre et al., 2015; Sriram et al., 2018; Stahlberg,
Cross, et al., 2018).

An alternative but related approach is dropout, which randomly omits a small subset
of parameters θdropout from optimization for a training batch (Hinton, Srivastava, et al.,
2012). This can be interpreted as regularization at a given training step with LReg(θ) = ∞ for
θ ∈ θdropout, 0 otherwise, but without the effect of numerical overflow.

2.3.3 Optimization choices

Optimizer

While Rumelhart et al. (1986) originally suggest learning parameter weights for neural
networks by gradient descent, many variations have been proposed. Stochastic Gradient
Descent (SGD) algorithms are sensitive to both minibatch size and learning rate. Training
typically continues until loss function convergence, or until converged on some held-out
validation set. Zeiler (2012) proposes AdaDelta optimization, which includes momentum
terms calculated over recent gradients. The momentum terms serve to automatically reduce
the learning rate near local minima, reducing parameter value oscillation. Adam optimization
(Kingma and Ba, 2015) similarly uses momentum terms, determined as a running average of
first and second gradient moments. Adam has been shown to empirically perform better than



2.4 Inference with NMT models 25

Adadelta (Kingma and Ba, 2015) and is the optimizer algorithm used in this thesis unless
otherwise stated.

Batch size

Data is fed into the neural network in minibatches, since computing the loss gradient over an
entire dataset is generally impractical and computing loss gradient over individual examples
is extremely slow. The mini-batch gradient may also be a less noisy estimate of the gradient
over the entire training set than a gradient calculated on a single example. This effect of
batch size on training performance can be interpreted in terms of signal-to-noise ratio of
training example gradients (McCandlish et al., 2018). Using larger minibatches in training
can therefore result in better final convergence, as demonstrated by Morishita, Oda, et al.
(2017) and Neishi et al. (2017). Notably Smith et al. (2018) find increasing batch size during
training requires fewer updates than the equivalent scheme of decaying the learning rate.

Batch size for NMT is often determined by number of tokens per mini-batch, rather than
number of training sentence examples. In this case a model trained on longer sentences will
on average see fewer training examples per minibatch than one trained on shorter sentences,
and large batch size may be particularly important. We explore the importance of batch size
in the context of varying text representation in Sec. 7.3.

2.4 Inference with NMT models

During training, the NMT model is provided with examples of source and target language
sentences x and y, and its parameters are adjusted in order to model P(y|x). During inference,
the model has access only to x, and must produce a target language translation hypothesis:

ŷ = argmax
y

P(y|x) (2.16)

In standard autoregressive NMT inference, a single output token is produced at each
inference step j. The model has access to the partial translation hypothesis, so this output
token is additionally conditioned on all previously output tokens. In an ideal case:

ŷ j = argmax
y j

P(y j|y1: j−1,x) (2.17)

Complete search through the |Vtrg| j partial translations that are possible for the jth output
token is intractable. Stahlberg and Byrne (2019) show that exact search methods involving
partial hypothesis likelihood pruning may still be impractically slow, and highlight that
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such search procedures may not give good translations. Nevertheless approximations to this
inference objective such as beam search perform well in practice.

In this section we review approaches to producing good translations during NMT infer-
ence which form the basis of experiments in this thesis.

2.4.1 Inference direction

While NMT inference as described in Eq. 2.17 takes place in a left-to-right (L2R) manner, it
could equally be factorized right-to-left (R2L) (Liu, Utiyama, et al., 2016) - that is, producing
the final token in the translation first. Other schemes for inference have been explored,
such as middle-out generation (Welleck et al., 2019) and non-autoregressive generation (Gu,
Bradbury, et al., 2018). In this thesis, we focus on the dominant approach of L2R inference.

2.4.2 Beam search

The most common algorithm for NMT inference is beam search. Beam search is a variant
on best-first search which is well-established as a means of generating multiple speech
and natural language sequence hypotheses generally (Greer et al., 1982) and of generating
machine translation hypotheses specifically (Och and Weber, 1998).

Instead of an exact search through the hypothesis space, beam search tracks the top
N partial hypotheses by log likelihood. At each inference step t, all possible single-token
expansions of the beams are reranked, and the updated top N selected, until all beams
terminate with an EOS marker or exceed a pre-determined maximum length. The special
case where N = 1 is known as greedy search. In this case the model simply produces the
most likely next token at each step.

Variations have included optimizing for cross-beam diversity (Li and Jurafsky, 2016;
Vijayakumar et al., 2016) and discouraging the tendency of NMT models to produce short,
inadequate translations. Koehn and Knowles (2017) highlight long sentence translation as
a major challenge for NMT. Test sentences have the potential to be longer than any in the
training set, which are normally length-filtered for more efficient training. During inference
the negative effects of long sentences can be reduced by simply segmenting sentences before
inference (Pouget-Abadie et al., 2014). However, there is evidence that inference schemes
like beam search tend to produce short translations in most cases. Indeed, Stahlberg and
Byrne (2019) find that extremely large beam sizes often assign the best score to the empty
translation, indicating a failure to model adequacy. A typical solution is to apply length
normalization during training (Murray and Chiang, 2018) or at inference time (Wu, Schuster,
et al., 2016)
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2.4.3 Ensembling

When performance is more important than decoding speed, a common approach is to perform
inference with an ensemble of NMT models. This generally achieves better results than
inference with one model alone (Dietterich, 2000; Frederking and Nirenburg, 1994; Hansen
and Salamon, 1990).

In the context of MT, an ensemble of models allows consensus about the next tokens
to expand and track in beams at each inference step (Rosti et al., 2007; Sim et al., 2007).
Scores from translation models with different architectures (Stahlberg, de Gispert, and Byrne,
2018) or target side language models (Gülçehre et al., 2015; Vaswani, Zhao, et al., 2013) can
be integrated. Many schemes for ensemble model combination exist, from simple majority
vote to minimizing Bayes risk under a given evaluation metric. A thorough discussion of
ensemble combination methods can be found in Rokach (2010).

In this thesis we focus on ensemble combination by weighting. That is, given K different
models to ensemble and weights Wk defined for each model, the ensemble translates with

ŷ = argmax
y

P(y|x) = argmax
y

K

∑
k=1

WkPk(y|x) (2.18)

A downside of ensemble inference for NMT is the slow-down in the inference process,
since the expensive softmax calculation must be carried out for each model individually.
Ensembling also usually requires storing all ensemble models in memory simultaneously.
Schemes such as ensemble knowledge distillation (Freitag, Al-Onaizan, and Sankaran, 2017;
Fukuda et al., 2017) and ensemble unfolding (Stahlberg and Byrne, 2017) can enable a single
model to reach similar performance as an ensemble of similarly trained models.

Each of these schemes for simplifying an ensemble of models into a single model assumes
implicitly that all models in the ensemble produce the same form of output in the same way:
for example, that all models produce subword sequences or syntactic sequences but not a
mixture. They also assume that the same ensemble combination scheme is applicable in all
cases: for example, that averaging scores from all ensemble models is a good combination
scheme for all test sentences regardless of sentence or model domain. In Sec. 3.5.1 we discuss
prior work on ensembles for domain adaptation where this is not the case. In terms of original
work on the problem we describe our own approaches to domain adaptive ensembling in
Chapter 6, and a scheme for multi-representation ensembles in Sec. 7.3.
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Checkpoint averaging

If only a single model is trained, a simple alternative to model ensembling is possible by
averaging parameters over individual checkpoints saved at different points in model training
(Vaswani, Shazeer, et al., 2017). Popel and Bojar (2018) find that checkpoint averaging gives
stronger performance than using individual checkpoints, with less performance fluctuation
at a given point in training. Liu, Zhou, et al. (2018) investigate the optimal number of
checkpoints to average for NMT, finding that too many checkpoints may result in decreasing
scores.

2.4.4 Evaluating machine translation

The ultimate test of machine translation quality is human judgement. However, machine
translation evaluation is often required in situations where manual human evaluation is
not practical. When assessing incremental changes to many machine translation systems,
or when optimizing a system directly with respect to an evaluation metric through MERT
training (Och, 2003) or MBR decoding (Kumar and Byrne, 2004), hundreds or thousands of
translation evaluations may be needed per model. In these cases human evaluations would be
too time-consuming and expensive, so automatic evaluation metrics are used instead.

In general, automatic MT metrics compare generated translation hypotheses to human
reference translations. A hypothesis that is similar to its reference is considered to be high
quality, with the similarity measure varying between metrics. In this thesis we primarily use
the BLEU metric (Papineni et al., 2002). BLEU is a function of n-gram precision pn between
hypothesis and human reference calculated over all hypotheses in a test set:

pn =
∑Hyps ∑n-grams min(Count(Ref, n-gram), Count(Hyp, n-gram))

∑Hyps ∑n-grams Count(Ref, n-gram)
(2.19)

The function Count(S, g) returns the number of occurrences of n-gram g in sequence S.
Since hypotheses with high n-gram precision may still miss words that should appear in the
reference, a brevity penalty (BP) is typically added:

BP =

1, |Hyp|> |Ref|

exp
(
1− |Ref|

|Hyp|
)

otherwise
(2.20)
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BLEU score is then the geometric average of n-gram precisions up to and including
n = N, where usually N = 4. Interpolation weights wn are normally set to 1

N . The geometric
average is scaled by the brevity penalty:

BLEU = BPexp
( N

∑
n=1

wn log pn
)

(2.21)

The maximum BLEU score is 1.0 for a translation hypothesis that perfectly matches the
reference2 and 0.0 for a translation containing no n-grams in the reference. Usually BLEU is
scaled for reporting between 0.0 and 100.0.

BLEU is calculated at the corpus level, but it is sometimes necessary to evaluate sentence-
level translation, for example for MRT optimization (Sec. 2.3.1). A typical approximation
for this purpose is sentence-level BLEU or sBLEU, which has two major differences from
BLEU. One is that precision pn has no summation over hypotheses, since it is calculated for
each hypothesis separately.

The other difference is that pn for sBLEU is typically smoothed, commonly by setting
initial n-gram counts to 1 (Lin and Och, 2004). This is necessary because there can often be
no higher-order n-gram matches for an individual hypothesis, in which case BLEU without
smoothing would become 0.0. Smoothing allows discrimination between (e.g.) a hypothesis
with no matches at all and a hypothesis merely lacking 4-gram matches. However, optimizing
for smoothed sBLEU can lead to short translations (Nakov et al., 2012), and does not directly
match the evaluation objective of corpus-level BLEU. In Sec. 5.3 we therefore develop MRT
optimization over minibatch ‘corpus’-level BLEU for NMT.

2.5 Conclusions

This chapter introduces the background to Neural Machine Translation (NMT). In extremely
general terms, NMT can be summarized as follows: source and target language sentences are
treated as sequences of words or subword units. An end-to-end neural network architecture
is defined to express a mapping between the sequences, and its parameters are adjusted
according to an objective function over training data. Finally, the model translates source
sentences with no provided target sentence in an inference procedure.

The vast majority of baselines in this thesis will follow the end-to-end approach described
in this chapter, representing sentences with BPE subword decomposition (Sec. 2.1.2) and
using a Transformer architecture (Sec. 2.2.4) trained with a cross-entropy loss function (Sec.

2BLEU was designed for scoring against multiple human references, but often in practice only a single
reference is available. This is the case for experiments carried out in this thesis.
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2.3.1), with inference conducted via beam search (Sec. 2.4.2). More detail on the specifics of
baseline models are provided in the relevant experimental sections.

The approaches to NMT discussed in this chapter are not typically associated with domain
adaptation. However, as part of the original contributions of this thesis we will describe
the applicability of some approaches to domain adaptation, developing them further in this
context:

• In Chapter 5 we further explore the effects of domain mismatch and exposure bias
(Sec. 2.3) when adapting to small datasets, and develop a robust form of MRT (Sec.
2.3.1) to reduce these effects.

• In Chapter 7, we show that use of different data representations for NMT (Sec. 2.1) can
benefit from many of the approaches used when translating multiple domains as defined
by provenance or topic. We explore the benefits of sub-character data representations
for logographic languages (Sec. 2.1.2) on higher and lower resource domains during
training and inference.

• Also in Chapter 7, we develop a scheme to incorporate multiple complementary target
sentence representations, particularly syntactic representations (Sec 2.1.3), in the same
NMT ensemble.

The next chapter will review domain adaptation techniques for NMT. These are variations
on the approaches to NMT data, architecture, training and inference presented in this chapter,
intended to allow effective translation over one or more specific text domains.



Chapter 3

Domain adaptation for machine
translation: a review

NMT has seen impressive advances for some translation tasks in recent years. In particular,
recent WMT news and biomedical translation tasks identify several systems as performing
on par with a human translator for some high-resource language pairs according to human
judgements (Barrault et al., 2019; Bawden, Bretonnel Cohen, et al., 2019). Indeed, these tasks
involve not only high-resource language pairs but also relatively high-resource domains, with
millions of relevant sentence pairs available for training. However, NMT models perform
less well on out-of-domain data. A model trained on exclusively news data is unlikely to
achieve good performance on the biomedical domain, let alone human parity. Koehn and
Knowles (2017) identify this ‘domain mismatch’ as a major challenge for NMT.

Models trained on data from all domains of interest can perform well across these domains.
However, there is always the possibility of additional domains becoming interesting at a later
stage. While it certainly possible to train a new model across all datasets from scratch for
every new domain of interest, this is not generally practical. A more efficient approach is
domain adaptation.

In this chapter we review prior work on domain adaptation for NMT. We first describe
different elements that constitute a text domain, and then consider adaptation schemes accord-
ing to the following broad areas: adaptation data selection, changes to model architecture,
parameter adaptation procedure, and adaptation via inference procedure. These roughly
correspond to areas of NMT model development reviewed in Sec. 2.1, 2.2, 2.3 and 2.4
respectively. We conclude the chapter by reviewing techniques for reducing gender bias in
NMT as a case study for applying domain adaptation.

Domain adaptation can be targeted towards both scenarios discussed in Sec. 1.1: adapta-
tion to a known test domain or adaptation with the possibility of an unknown test domain. In
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the first case adaptation aims for optimal performance on some fixed domain without consid-
ering other domains, while in the second adaptation must achieve good performance across
potentially many domains. The primary focus of this thesis is the second case, although
many of the techniques reviewed are applicable in both scenarios.

3.1 What is meant by a domain?

Adapting to a ‘domain’ for machine translation has come to refer to a number of disparate
concepts. A thorough review given in van der Wees (2017) distinguishes various aspects that
combine to form a domain and studies the extent to which MT output is affected by each. In
this section, we briefly review their findings and the surrounding literature, and clarify what
is meant by a domain for the purposes of this thesis.

Many possible categories and sub-categories may describe a language domain for the
purposes of education, text classification or data retrieval. These may not be well defined,
especially across fields of research (Sinclair and Ball, 1996). However, we concentrate on
the following elements of a domain as identified by van der Wees (2017) in the context of
MT research:

• Provenance: The source of the text, usually a single discrete label. This may be a
narrow description, such as the 11K English-German sentence pairs in the WMT post-
editing shared task IT corpus (Turchi et al., 2017), or an extremely broad description,
such as the 37M English-German web-crawled sentence pairs in the cleaned Paracrawl
corpus (Bañón et al., 2020). Importantly, the provenance of a test sentence is generally
unknown.

• Topic: The subject of text, for example news, software, biomedical. Topic often reveals
itself in terms of distribution over vocabulary items. Each word in the vocabulary may
have different topic-conditional probabilities, and a document (or sentence) may be
classified as a mixture of topics (Blei et al., 2003). The topic(s) of a test sentence can
also be determined as a mix of latent topics determined over training data. Adaptation
towards such latent topics defined in terms of text features has previously been explored
for statistical MT (Hasler, 2015).

• Genre: Genre may be interpreted as a concept that is orthogonal to topic, consisting
of function, syntax and style (Santini, 2004). For example, multiple documents about
a company may share topics and use similar vocabulary, such as the name of the
company or specific products. However, a recruitment document, product specification,
or product advertisement would all constitute different genres (Lee and Myaeng,
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2002). Kessler et al. (1997) identify various cues for automatic genre detection in
text, including relative frequency of different syntactic categories, use of particular
characters such as punctuation marks, and sentence length distribution.

Provenance is generally unknown at test time, and topic and genre can vary between
sentences or within sentences in the same document or test set. In this thesis, we refer to the
domain of a machine translation model primarily in terms of either training data provenance,
which is known, or measurable performance. If a model translates certain text well, we can
say that the model covers the domain of the text, whether because of provenance, topic or
genre coverage in the training data.

In most cases we also report test results in terms of domains by provenance, having trained
and evaluated on externally defined corpora. This is necessary for evaluation campaigns,
and allows us to compare easily with prior work in general. However, we develop systems
by considering other elements of domain definition. In Sec. 4.3 we explore adaptation to
small datasets determined by genre match as well as provenance. In Sec. 5.2 and Sec. 6.3 we
adapt across a range of domains in terms of provenance, topic and genre, and show improved
translation performance across test sentence provenance.

Finally, our case studies in Chapters 7 and 8 highlight low-level elements of machine
translation: the effects of changing data representation on translation quality, and the effects
of gender bias on coreference resolution. These have received attention as NMT research
topics in their own right. However, while they can be viewed as elements of genre according
to the criteria given by Kessler et al. (1997), they are not typically treated as relevant to
domain adaptation. We demonstrate that combining these low-level elements of translation
with domain adaptation techniques results in improved NMT performance.

3.2 Data selection for adaptation

A domain is identifiable by features of its data. Topic and genre, as described above, are
often defined in terms of vocabulary choices and syntactic style. Data selection is therefore a
crucial aspect of domain adaptation.

In this section we discuss selection of natural and synthetic data for domain adaptation.
Most data used in training NMT models is natural – produced by a human – in which case it
must usually be selected from a larger corpus according to some criteria. A special case of
natural data selection is filtering for cleaner data, which is often performed before any model
training. Alternatively, synthetic data can be generated for a domain, or existing in-domain
data can be made partially synthetic by schemes such as noising, simplification or back
translation.
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3.2.1 Selecting natural data for adaptation

Given a test domain of interest and a large pool of general-domain sentences, there are many
ways to extract relevant data. Sentences can be selected by word content corresponding
to a topic of interest using methods developed for information retrieval, such as TF-IDF
and n-gram frequency measures (Eck et al., 2004). Retrieved sentences can then be used
for translation system adaptation. Similar techniques can select sentences that are different
from existing training sentences to minimize the size of a dataset covering many domains
(Eck et al., 2005), for example using Feature Decay Algorithms (Poncelas, Maillette de
Buy Wenniger, et al., 2019). A related neural-specific approach is suggested by Wang,
Finch, et al. (2017), who select sentences with embeddings similar to in-domain sentence
embeddings to add to the in-domain corpus. Straightforward n-gram matching (Li, Zhang,
et al., 2018; Zhang, Utiyama, et al., 2018) and token overlap (Xu et al., 2019) have been
used to select sentence pairs for NMT adaptation to a domain defined by very few test source
sentences.

Sentences can be selected after explicit scoring by external models. Moore and Lewis
(2010) select data for in-doman language model training by scoring the data under in-
domain and general domain language models, and taking the cross-entropy difference. This
effectively scores a training sentence pair by its relevance to the in-domain corpus. Axelrod
et al. (2011) add a bilingual cross-entropy difference term to select data for SMT domain
adaptation specifically. However, such static cross-entropy difference filtering schemes have
difficulties when in-domain and general domain corpora are very similar (van der Wees et al.,
2017).

Axelrod (2017) instead suggests ‘cynical data selection’, an approach which repeatedly
selects the sentence that most reduces the relative entropy for modelling the domain of
interest. Importantly, this does not involve actually defining a domain. Indeed, Santamarı́a
and Axelrod (2017) note that using classifiers for data selection is not necessarily a good
conceptual approach since a sentence pair may easily appear in multiple corpora, and instead
reframe the ‘in-domain’ and ‘general domain’ corpora as data that we know we are interested
in or do not yet have an opinion about. Similarly Aharoni and Goldberg (2020) dispense with
assigned corpus labels and show that adapting to data identified by unsupervised domain
clustering using large language models matches or out-performs tuning on the ‘correct’
domain-labelled data. In Sec. 5.2 we explore the concept of overlapping domain data for
NMT model adaptation between small domains as defined by provenance.
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Data filtering

By far the simplest approach to natural data selection for adaptation is use of provenance. This
means, where possible, taking an existing relevant corpus label as indicative of domain. In this
case data filtering can still be applied to ensure that all selected data is actually representative
of a domain. For example, Taghipour et al. (2011) map sentences in a constructed parallel
corpus to a feature space, and mark the most novel pairs in the feature space as noise to be
removed. Some care must be taken not to diminish the training space too far: for example,
Lewis and Eetemadi (2013) attempt to maximize n-gram coverage with remaining data while
filtering sentences for SMT.

A special case of data filtering is targeted to remove ‘noisy’ training examples. This may
be applied to a general domain corpus before a model is trained to ensure that source and
target sentences in the training sentence are well-aligned, contain the languages of interest,
are not too long or contain too many non-words (e.g. HTML tags) (Berard et al., 2019;
Khayrallah and Koehn, 2018). This can be achieved in very similar ways to domain data
selection, for example with extensions of cross-entropy difference filtering (Moore and Lewis,
2010) to bilingual training examples, where the ‘in-domain’ models are trained on clean data
only (Junczys-Dowmunt, 2018a; Junczys-Dowmunt, 2018b).

3.2.2 Generating synthetic data for adaptation

Bilingual training data that is relevant to the domain of interest may not be available. In
this case, it is often possible to construct partially or fully synthetic bilingual training
corpora. This is a case of data generation for adaptation rather than data selection. Partially
synthetic data may be monolingual data that is forward- or back-translated to form bitext,
or existing bilingual data that is noised or simplified. Completely synthetic data may be
template-generated, or involve an external or induced lexicon.

Back translation and forward translation

Given monolingual data in the domain of interest and a sufficiently strong existing NMT
model, it is possible to back-translate or forward-translate the monolingual data to obtain
aligned source and target language training sentences.

Back translation treats the natural monolingual data as target sentences, and requires a
target-to-source NMT model to generate synthetic source sentences. Back translation can
be applied to a specific domain but is very commonly used to augment general domain
translation corpora, with strong improvements over models not trained on back-translated
data (Sennrich, Haddow, and Birch, 2016c). Variations on back translation include sampling
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multiple source sentences instead of back-translating with beam search (Imamura et al.,
2018) or noising back translations (Edunov et al., 2018b). Models trained primarily or
even exclusively on back translated data have shown similar performance to models trained
on natural data(Poncelas, Shterionov, et al., 2018). Back translation has been shown to
out-perform forward translation in the context of domain adaptation for SMT (Lambert et al.,
2011), while using back translated data for NMT adaptation can require synthetic data ‘repair’
to reduce noise (Wei et al., 2020).

Forward translation treats the natural data as source sentences and generates synthetic
target sentences with an existing source-to-target NMT model. While forward translation is
less widely used than back translation, it can be used for efficient domain adaptation. For
example, a single model can forward-translate to generate synthetic bitext in the domain of
interest and then can itself be adapted to that bitext, as in Chinea-Rı́os et al. (2017), while
back translation requires an additional reverse NMT model. A variation uses a much larger
or otherwise stronger ‘teacher’ model to generate in-domain forward translations which are
then used to train or tune a ‘student’ model (Currey, Mathur, et al., 2020; Gordon and Duh,
2020).

Unlike back translation, forward translation can also be applied to source data with
particular characteristics, such as the test set itself. This results in either synthetic test target
sentences, or synthetic-target test bitext. Synthetic target sentences alone may be used as a
seed to retrieve more relevant natural or synthetic bitext for adaptation (Poncelas, Wenniger,
et al., 2018). Synthetic-target bitext can be used for further training directly, or introduced
into a corpus of candidate sentences from which it may be selected using a domain-specific
scheme (Poncelas and Way, 2019). In Sec. 8.3 we investigate forward translation in the
context of counterfactual data augmentation for direct domain adaptation.

Artificially-noising and simplifying natural data

An alternative way to generate additional synthetic data is to take existing natural bitext and
change the source or target sentence in some way. A common example is adding artificial
noise to source language training sentences. Source language characters and words can be
deleted, substituted or permuted. Training on these adversarial synthetic examples have
been shown to improve robustness to natural noise in test sentences (Karpukhin et al., 2019;
Vaibhav et al., 2019). Additionally Tan et al. (2020) demonstrate improved NMT robustness
to linguistic variation by fine-tuning on synthetic adversarial examples.

Synthetic examples can also be constructed from natural text by simplifying some source
(Hasler, de Gispert, Stahlberg, et al., 2017; Li, Wang, et al., 2020) or target (Agrawal and
Carpuat, 2019) sentences before training. The former case can make sentences easier to
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translate and can be applied to test sentences. The latter allows translation into language
with a specified complexity level. However, sentence simplification approaches are less
common than noising approaches due to the difficulty in obtaining simplification training
data and models, which may themselves rely on the presence of large-scale corpora for a
given language or be domain-sensitive (Mehta et al., 2020). These are not needed if the goal
is noising: it is intuitively more difficult to correctly simplify natural language than to add
errors to it.

One motivation for including synthetic examples is improving robustness to noisy training
examples. We note that any synthetic variations on existing bilingual examples may also
cause a regularization effect by reducing the likelihood of over-fitting to a small set of
one-to-one training examples (Bishop, 1995).

Purely synthetic data for adaptation

A final genre of data for adaptation is purely synthetic data. This may be obtained from an
external or induced lexicon, or constructed from a template.

Lexicons have been used effectively when dealing with rare words, OOV words or
ambiguous words with multiple senses in the training data (Zhao, Zhang, et al., 2018). For
SMT lexicons can be used to mine translation model probabilities directly (Daumé III and
Jagarlamudi, 2011). In NMT lexicon probabilities may be incorporated into the NMT loss
function (Arthur et al., 2016) or bilingual lexicon entries may be used to construct partially
synthetic sentence pairs (Zhang and Zong, 2016).

Another application of synthetic lexicon data is words or phrases for which there is an
easily obtainable translation, and that the model is likely to be required to translate. This type
of data is usually domain specific: NMT for use on social media may require translations for
common greetings, while a biomedical NMT system may have a fixed set of terminology
to translate. Hu et al. (2019) adapt to a lexicon for a given domain, while Kothur et al.
(2018) adapt to a lexicon containing novel words in a test document. Song, Zhang, et al.
(2019) replace certain source phrases with pre-specified target translations to encourage copy
behaviour. In Sec. 8.3 we discuss creation of synthetic sets of adversarial examples in the
context of mitigating the effects of gender bias in NMT.

3.3 Architecture-centric adaptation approaches

Architecture-centric approaches to domain adaptation typically add trainable parameters to
the NMT model itself. This may be a single new layer or domain discriminator, or a new
subnetwork. These parameters may be determined when the model is first defined, or added
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before tuning. The aim is generally to improve model performance over some identifiable
new domain.

One genre of architecture-based approach treats the encoding or decoding procedure
differently depending on domain. Zeng et al. (2018) and Pham et al. (2019) change word
embeddings to have domain-specific features, while Gu, Feng, et al. (2019) use a combination
of shared and domain-specific encoders and decoders. Nguyen and Chiang (2018) augment
models with a lexical choice network targeted at improving translation of rare or ambiguous
words in a given domain. Wang, Wang, et al. (2020) augment NMT models with networks to
identify domain-specific features.

Where data is domain-labelled, the labels themselves can be used to signal domain for a
multi-domain system (Kobus et al., 2017). This approach can be scaled to new domains by
adding more labels (Tars and Fishel, 2018). Architectural changes can then take advantage
of these labels. Britz, Le, et al. (2017) share encoders and decoders across domains but add a
domain discriminator to determine a target domain label corresponding to one of the training
domains.

A lightweight approach to domain adaptation for NMT adds only a limited number of
parameters. The added parameters are adapted only on in-domain data, and pre-trained
parameters may be ‘frozen’ – held at their pre-trained values. This is the approach taken by
Vilar (2018), who effectively regularizes parameters with an added importance network, and
Bapna and Firat (2019), who freeze general-domain models and add small adapter layers for
fine-tuning on a given domain.

Such architectural approaches are capable of good performance over multiple domains.
If original parameters are left unchanged and only a new set of parameters is adapted,
performance degradation on the original domain can avoided by simply using the original
parameters. However, such approaches implicitly assume that language domains are discrete,
distinct entities. New architecture may be either ‘activated’ if the test set is in-domain,
or ‘deactivated’ for better general domain performance (Vilar, 2018). A sentence may be
assigned to a single domain, and a label added for that domain. (Tars and Fishel, 2018).

By contrast, this thesis takes the view that multiple text domains may overlap, and that
training domains may be mutually beneficial for translation performance. This is particularly
likely given that the unknown test data domain may not be an exact mapping to one of the
training domains, but may also be the case for ‘known’ domain sentences which benefit from
the general translation model. The rest of this thesis therefore discusses schemes for adapting
an NMT model without changes to the architecture.
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3.4 Training schemes for adaptation

Once data is selected or generated for adaptation, a pre-trained model can be fine-tuned on that
data. Fine-tuning on data involves model parameter adaptation according to loss on that data.
Straightforward continuation of training on the new data is the simplest approach. However,
this often leads to over-fitting on the new data and catastrophic forgetting of performance on
previous domains (McCloskey and Cohen, 1989; Ratcliff, 1990). This section will review the
catastrophic forgetting effect in the context of NMT domain adaptation, as well as training
schemes proposed to mitigate it: regularization, curriculum learning and instance weighting.

3.4.1 Fine-tuning and catastrophic forgetting

An extremely simple way to adapt to a new domain is to continue training a pre-trained
general domain model on a smaller amount of data from the domain of interest (Luong and
Manning, 2015). A special case of fine-tuning for adaptation occurs when the new data has a
different source language (Zoph et al., 2016) or target language (Kocmi and Bojar, 2018) from
the original model. This is common when developing NMT systems to translate low-resource
language pairs. A distinction is that in this case catastrophic forgetting of the original model’s
abilities is less of a concern, since it is likely that a user can pre-determine which languages
will be translated with which model. However, many techniques are applicable to both
single-language-pair domain adaptation and cross-lingual transfer learning.

For domain adaptation, catastrophic forgetting is less important when the model is
intended to translate only a small amount of highly specific data. Examples include adapting
a new model to translate each individual test sentence (Li, Zhang, et al., 2018) or document
(Kothur et al., 2018). In Sec. 5.2 we discuss fine-tuning for a biomedical scenario where the
target domain is known and quite narrow. However, in general, the pre-trained model has
some translation ability which it is preferable not to forget.

A straightforward approach to avoiding catastrophic forgetting is to simply fine-tune for
fewer steps (Xu et al., 2019). However, this introduces an inherent trade-off between better
performance on the new domain and worse performance on the old domain. Other approaches
to good multi-domain performance with a single model include parameter regularization
(Sec. 3.4.2), changing the order that data is shown to the model (curriculum learning, Sec.
3.4.3) or the impact data has on a model (instance weighting, Sec. 3.4.4).
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3.4.2 Parameter regularization

A straightforward way to avoid forgetting is to minimize changes to the model parameters.
The intuition is that if parameters stay close to their pre-trained values, they will give similar
performance on the pre-training domain. For example, Thompson, Khayrallah, et al. (2018)
and Michel and Neubig (2018) simply choose subsets of the NMT model parameters to hold
at their pre-trained values when fine-tuning on a new domain. Wuebker et al. (2018) likewise
adapt only a subset of model parameters, encouraging sparsity in the adapted parameters
with L1 regularization to improve efficiency.

Barone et al. (2017) allow all NMT model parameters to vary under L2 regularization
relative to their pre-trained values θ PT . Kirkpatrick et al. (2017) introduce the related
approach of Elastic Weight Consolidation (EWC) for computer vision domain adaptation.
EWC effectively scales the L2 regularization applied to each parameter θ j by Fj. We illustrate
these approaches in Figure 3.1. If Λ is a scalar weight a general-form L2 regularized loss
function is:

θ̂ = argmin
θ

[LCE(x,y;θ)+Λ∑
j

Fj(θ j −θ
PT
j )2] (3.1)

Relative domain importance can be controlled or tuned with Λ, which is larger if the old
domain is more important and smaller if the new domain is more important. L2 regularization
occurs where Fj = 1 for all j. For EWC Kirkpatrick et al. (2017) define Fj as the Fisher
information for the pre-training domain estimated over a sample of data from that domain,
(xPT ,yPT ).

Fj = E
[
∇

2LCE(xPT ,yPT ;θ
PT
j )

]
(3.2)

In Sec. 5.2 we describe our own experiments with EWC and L2 for NMT domain
adaptation (Saunders, Stahlberg, de Gispert, et al., 2019). Independently and concurrently
with our work, Thompson, Gwinnup, et al. (2019) also apply EWC to reduce forgetting
during NMT domain adaptation.

Knowledge distillation

Knowledge distillation and similar ‘teacher-student’ model compression schemes effectively
use one teacher model to regularize training or tuning of a separate student model (Buciluǎ
et al., 2006; Hinton, Vinyals, et al., 2015). Typically the teacher model is a large, pre-trained
model, and the student is required to emulate its behaviour with far fewer parameters. The
student model is fine-tuned such that its output distribution remains similar to the teacher
model’s output distribution over the pre-trained data (Kim and Rush, 2016). A distinct but
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Fig. 3.1 Illustration of parameter regularization during fine-tuning from a pre-training (PT)
domain to a new domain, based on Fig. 1 from Kirkpatrick et al. (2017). If the pre-trained
parameters θ PT are adapted with no regularization (NR), good performance on the new
domain corresponds to catastrophic forgetting on the pre-training domain. Applying the same
regularization to all parameters (L2) encourages minimal overall change from θ PT , which
may not allow sufficient improvement on the new domain. EWC regularization (Kirkpatrick
et al., 2017) aims to allow good performance for the new domain by varying the parameters
that are unimportant for the pre-training domain.

related approach simply prunes the large teacher model’s parameters while attempting to
maintain performance (LeCun et al., 1990; Voita, Talbot, et al., 2019).

In a domain adaptation context, knowledge distillation encourages similar performance
on the pre-training domain with a regularization function between general and in-domain
model output distributions (Dakwale and Monz, 2017; Khayrallah, Thompson, et al., 2018;
Mghabbar and Ratnamogan, 2020). We see this approach as similar in spirit to parameter
regularization while being more complex, since two models must actually operate on the data.
This can be effective when the aim is to compress the teacher model, since in this case the
in-domain student model is likely to be much smaller than the other. For models remaining
the same size we view parameter regularization as more practical.

3.4.3 Curriculum learning

Bengio, Louradour, et al. (2009) recognize that humans learn best when concepts are
presented in a meaningful order, or a curriculum. They hypothesize that neural model
training can benefit from the same strategy of curriculum learning in terms of convergence
speed or quality of converged model, and demonstrate that this is the case for a language
modelling task with a curriculum of increasing vocabulary size.

In broad terms, a curriculum ranks the training examples. The ranking then guides
the order in which examples are presented to the model during training or fine-tuning. A
typical ranking when applying a curriculum throughout training orders training examples by
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difficulty, with the easiest examples shown first and the more complex examples introduced
later (Weinshall et al., 2018; Zhang, Kim, et al., 2017). Difficulty can be determined in terms
of data features like sentence length, linguistic complexity or word rarity (Kocmi and Bojar,
2017; Platanios et al., 2019).

Difficulty can also be based on the ‘competence’ of the model (Platanios et al., 2019). A
training example may be considered difficult for an NMT model at a given point in training
if the example’s embedding norm is large (Liu, Lai, et al., 2020), if the training loss of the
example is changing significantly between training iterations (Wang, Utiyama, and Sumita,
2018), or if the model simply does not translate it well (Dou et al., 2020).

Much of the above work on curriculum learning frames the problem as discovering
an ‘easiest-to-hardest’ ranking. Other rankings are possible. In fact, Zhang, Kumar, et al.
(2018) find that both easy-first and hardest-first schedules can give similar convergence
improvements. Another form of curriculum learning for NMT which does not depend on
sample difficulty is scheduled sampling (Bengio, Vinyals, et al., 2015). Scheduled sampling
gradually anneals target sequences during training from human references to sequences
partially generated by the NMT model in an effort to avoid exposure bias (Sec. 2.3).

More relevant to this thesis, a curriculum ranking can be constructed from least-domain-
relevant examples to most-domain-relevant. In fact, simple fine-tuning (Sec 3.4.1) can be
seen as an example of curriculum learning where the final part of the curriculum contains
only in-domain data. Curriculum schemes may therefore have much in common with data-
centric adaptation methods. However, curriculum-based approaches to domain adaptation
generally involve a gradual transition to in-domain data. For example, Wang, Watanabe,
et al. (2018) use an incremental denoising curriculum to fine-tune a pre-trained NMT model
on increasingly clean data from its existing training corpus. Similar ‘cleaning’ fine-tuning
curricula data can be learned via reinforcement learning methods (Kumar, Foster, et al., 2019;
Zhao, Wu, et al., 2020).

When adapting to a distinct domain a curriculum can be determined in terms of similarity
score with known target domain data. The scored data may be ‘pseudo in-domain’ data
extracted from general corpora that has been previously seen by the model (Farajian et al.,
2017; van der Wees et al., 2017; Zhang, Shapiro, et al., 2019), some mixture of in-domain
and general-domain data (Chu et al., 2017; Sajjad et al., 2017), or data from multiple domains
identified with domain-specific features (Wang, Tian, et al., 2020). Incorporating previously-
seen data into the curriculum can be used to reduce forgetting: for example, Aljundi et al.
(2019) demonstrate that maintaining a representative ‘replay buffer’ of past training examples
can avoid forgetting even when hard domain boundaries are not available.
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3.4.4 Instance weighting

Instance weighting is a scheme where training examples are weighted according to their
relevance to the target domain (Foster et al., 2010). For NMT, an instance weight Wx,y for
each source-target training example can easily be integrated into a cross-entropy-based loss
function:

L(x,y;θ) = ∑
(x,y)

−Wx,y logP(y|x;θ) (3.3)

A higher weight indicates that a sentence pair is more important for training towards the
target domain, while a low (or zero) weight will lead to sentences effectively being ignored
for training purposes. The weight may be determined in various ways. It may be the same for
all sentences marked as from a given domain, or defined for each sentence using a domain
similarity measure like n-gram similarity (Joty et al., 2015) or cross-entropy difference
(Wang, Utiyama, Liu, et al., 2017). If changes can be made to the model architecture, the
instance weight may be determined by a domain classifier (Chen, Cherry, et al., 2017), or
an architecture-dependent approach like sentence embedding similarity (Zhang and Xiong,
2018).

We view instance weighting as fundamentally the same idea as curriculum learning (Sec
3.4.3). Both schemes bias the model to place more importance on losses for certain training
examples. Some forms of curriculum learning are implemented in a similar way to instance
weighting, with a higher weight applied to examples that fall into the current section of the
curriculum, or a zero weight applied to examples that should not yet be shown to the model
(Bengio, Louradour, et al., 2009; Dou et al., 2020). One difference is that instance weights
for domain adaptation do not usually change as training progresses or model competence
changes, but bias the model towards in-domain data in a constant manner.

3.5 Inference schemes for adaptation

One way to side-step the problem of catastrophic forgetting is simply assigning a separate
NMT model to each domain. Such models can be obtained using the techniques discussed in
all previous sections of this chapter, for example by fine-tuning a single pre-trained model on
data from each domain of interest.

While this approach is simple, if not memory-efficient, it begs the question of how best
to perform translation on an unseen source sentence from an unknown domain. Two possible
approaches are multi-domain ensembling, and reranking or rescoring an existing set of
translation hypotheses.
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3.5.1 Multi-domain ensembling

At inference time an NMT ensemble can use the predictions of multiple models to produce
a translation in a single pass, as described in Sec. 2.4.3. It may be that in a given scenario
certain models in an ensemble are more useful than others. For example, integration of a
language model could provide improved fluency (Gulcehre et al., 2017; Stahlberg, Cross,
et al., 2018). NMT models which use different surface-level representations of the source
sentence (Hokamp, 2017) or translate the source sentence from different languages (Firat
et al., 2016; Garmash and Monz, 2016) may likewise contribute differently to a translation
depending on the source sentence. In Sec. 7.3 we explore schemes for ensembling multiple
NMT models with different surface-level representations of the target sentence, and describe
the potential benefits of doing so (Saunders, Stahlberg, de Gispert, et al., 2018).

In the context of a source sentence of unknown domain, Freitag and Al-Onaizan (2016)
show good performance using ensembles of general models and in-domain models fine-tuned
without regularization. Sajjad et al. (2017) also use multi-domain ensembles and weight the
contribution of each ensemble model as in Eq. 2.18. They determine static ensemble weights
tuned on development sets. For SMT, (Huck, Birch, et al., 2015) use a language model to
classify the domain of a test sentence when determining which set of parameters to use when
generating the translation hypothesis.

Allauzen and Riley (2011) introduce Bayesian Interpolation (BI) for adaptively weighting
language models in ensembles for speech recognition. Importantly, they do not necessarily
specify that the ‘task’, t – the domain of the test sentence – corresponds to exactly one of
the model domains k. Neither do they assume that a uniform weighting of all K domains is
optimal for all tasks. Instead they use a set of tuned ensemble weights λk,t , which defines a
task-conditional ensemble:

p(y|t) =
K

∑
k=1

λk,t pk(y) (3.4)
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This can be used as a fixed weight ensemble if task t is known. However if t is not known,
the ensemble can be written as follows at inference step i, where hi is history y1:i−1:

p(yi|hi) =
T

∑
t=1

p(t,yi|hi)

=
T

∑
t=1

p(t|hi) p(yi|hi, t)

=
K

∑
k=1

pk(yi|hi)
T

∑
t=1

p(t|hi)λk,t

=
K

∑
k=1

Wk,i pk(yi|hi) (3.5)

That is, a weighted ensemble with state-dependent mixture weights computable from
task priors and the updated language model task posterior:

p(t|hi) =
p(hi|t)p(t)

∑
T
t ′=1 p(hi|t ′)p(t ′)

(3.6)

In Sec. 6.3 we extend this formalism to include conditioning on a source sentence. This
lets us apply Bayesian Interpolation to domain adaptive NMT with multi-domain ensembles
for situations where the test sentence domain is unknown (Saunders, Stahlberg, de Gispert,
et al., 2019).

3.5.2 Constrained inference and rescoring

Ensembling uses multiple models to produce a translation simultaneously. Another option is
to produce an initial translation with a single model, then adjust or ‘correct’ the translation
using another model. This is at minimum a two-step process, since multiple models must
perform an inference pass. However, it can be more efficient than ensembling: rescoring
does not involve holding multiple models in memory at once, and the second translation pass
is commonly held close to the initial translation in some way.

If the initial model produces multiple translations – for example, the highest scoring N
translations following beam search (Sec. 2.4.2) – a typical approach to multi-pass inference
is rescoring this N-best list using a different model or loss function. For example, MBR
decoding rescores N-best lists or lattices to improve single system performance for SMT
(de Gispert et al., 2010; Kumar and Byrne, 2004; Tromble et al., 2008), or for NMT if
a sufficiently diverse lattice can be defined, for example, from SMT n-gram posteriors
(Stahlberg, de Gispert, Hasler, et al., 2017). A neural-only approach to this problem rescores
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the N-best list of a L2R NMT model with a R2L NMT model (Liu, Utiyama, et al., 2016;
Sennrich, Haddow, and Birch, 2016b).

A related idea is constrained inference. For example, Stahlberg, Hasler, Waite, et al.
(2016) generate translation hypotheses with an SMT model, which are then represented as
a lattice that constrains NMT decoding. Khayrallah, Kumar, et al. (2017) constrain NMT
output to an SMT lattice to improve adequacy in domain adaptation scenarios. The initial
translation may itself be constrained: for example Hasler, de Gispert, Iglesias, et al. (2018)
constrain the NMT output to ensure it produces given terminology. Outside of NMT, lattice-
constrained rescoring of neural models has been applied to grammatical error correction
(GEC) (Stahlberg, Bryant, et al., 2019) and speech recognition (Liu, Chen, et al., 2016). In
Sec. 8.4.1, we describe the construction of gender-inflected search spaces for rescoring to
mitigate bias effects in translation.

We note that constrained lattice search does not require the rescoring system to use the
same target representation as the original system. For example, Ragni et al. (2017) perform
speech recognition and keyword search on morph-based initial lattices with word-based
models using an intermediary morph-to-word transduction. In Sec. 7.3 we use lattice-
constrained rescoring with intermediary transduction lattices to allow NMT model ensembles
with multiple target representations.

3.6 Gender bias in machine translation as a case study for
multi-domain adaptation

One of the novel contributions of this thesis is the framing of gender bias in NMT as a
domain adaptation problem. We therefore conclude this literature review with an overview
of the gender bias problem in NMT and prior work pertaining to it, with some motivation for
considering it a multi-domain adaptation problem.

3.6.1 Problem background

Translation into languages with grammatical gender involves correctly inferring the gram-
matical gender of all entities in a sentence. In some languages this grammatical gender is
dependent on the social gender of human referents. For example, in German, translation of
the entity ‘the doctor’ would be feminine for a female doctor – Die Ärztin – or masculine for
a male doctor – Der Arzt.

1Machine translation from Google Translate 7 Sept. 2020
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English source The doctor helps the patient, although she is busy

German reference
Die Ärztin hilft dem Patienten, obwohl sie beschäftigt ist
The [female] doctor helps the [male] patient, although she is busy

MT with a bias-
related mistake1

Der Arzt hilft der Patientin, obwohl sie beschäftigt ist
The [male] doctor helps the [female] patient, although she is busy

English source The nurse helps the patient, although he is busy

German reference
Der Krankenpfleger hilft dem Patienten, obwohl er beschäftigt ist
The [male] nurse helps the [male] patient, although he is busy

MT with a bias-
related mistake

Die Krankenschwester hilft dem Patienten, obwohl er beschäftigt ist
The [female] nurse helps the [male] patient, although he is busy

Table 3.1 Two examples of mistranslation relating to gender bias effects. Bolded words are
entities inflected to correspond to the pronoun. In the English source sentences ‘the doctor’
is coreferent with the pronoun ‘she’ and should be feminine-inflected, and ‘the nurse’ is
coreferent with ‘he’ and should be masculine-inflected. In the first example the machine
translation wrongly inflects the doctor entity as masculine and the patient entity as feminine.
In the second example the nurse is wrongly feminine-inflected even though the sentence has
no feminine pronoun.

In practice, however, many NMT models struggle at generating such inflections correctly
(Prates et al., 2019). Gender-based errors are particularly common when translating corefer-
ence resolution sentences with two entities, only one of which is coreferent with a pronoun
(Stanovsky et al., 2019). Table 3.1 gives two typical examples. In the first the machine
translation system incorrectly inflects the German hypothesis to contain a masculine doctor
and feminine patient, even though the ‘doctor’ is the entity coreferent with the feminine
pronoun. In the second it incorrectly inflects the German hypothesis to contain a feminine
nurse, even though the ‘nurse’ is the entity coreferent with the masculine pronoun, and there
is no feminine pronoun in the source sentence.

Stanovsky et al. (2019) explore these mistakes and demonstrate that they tend to reflect
social gender bias: machine translation tends to translate based on profession-based gender
stereotypes instead of correctly performing coreference resolution and translating using this
meaningful context. This may be because the systems are influenced by the higher frequency
of masculine-inflected doctors and feminine-inflected nurses in training data. We term this a
gender bias effect.

3.6.2 Reducing the effects of gender bias in NMT

In recent years there has been much interest in reducing the effects of gender bias in NMT
output. These fall broadly into two categories (Sun, Gaut, et al., 2019). The first consists of
work that attempts to control or ‘balance’ the training data or the model’s word embeddings
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to reduce the likelihood of translations exhibiting bias. The second seeks to control gender
inflection in the target language by explicitly or implicitly adding gender features during
training or inference which the model can rely on instead of any preconceptions.

Addressing bias with data balancing

Recent recommendations for ethics in Artificial Intelligence have suggested that social
biases or imbalances in a dataset be addressed prior to model training (HLEG, 2019). This
recommendation makes some intuitive sense: if bias stems from imbalances in the data,
a natural response would be attempting to remove these imbalances. Common related
approaches are counterfactual data augmentation and word embedding debiasing.

Counterfactual data augmentation involves identifying the subset of sentences containing
bias – in this case gendered terms – and, for each one, adding an equivalent sentence with
the bias reversed – in this case a differently gendered version (Lu et al., 2018). Zhao, Wang,
et al. (2018) show improvement in gender coreference resolution for English by training on
counterfactually augmented data. Zmigrod et al. (2019) demonstrate a more complicated
scheme for gender-inflected languages.

An alternative approach is proposed by Bolukbasi et al. (2016), who identify bias in
embeddings in terms of a gender subspace. Sets of gendered words such as pronouns
or professions have clustered word embeddings. The direction of maximum variation in
these embeddings is interpreted to constitute gender bias. Flattening this direction in the
embeddings either during training or before inference can reduce some effects of bias, either
binary or multi-class (Manzini et al., 2019). Escudé Font and Costa-jussà (2019) train NMT
models from scratch with debiased word embeddings, demonstrating improved performance
on an English-Spanish occupations task with a single profession and pronoun per sentence.

We highlight two major difficulties with data-balancing schemes for gender bias reduction
in NMT. The first is in how far they apply to the real problem. The recommendation of
pre-training bias removal from HLEG (2019) presupposes that the source of bias in a dataset
is both obvious and easily adjusted. In fact there are countless ways in which biases could
conceivably manifest in generated natural language, relating to gender or otherwise (Hovy
et al., 2020; Shah et al., 2020), so speaking in terms of simple biases or imbalances that can
be addressed is not clearly meaningful.

The second difficulty is practical. In terms of debiasing word embeddings, there is some
evidence that these techniques have only superficial effects, since embeddings for words with
similar biases are still clustered even if a ‘bias’ direction is flattened (Gonen and Goldberg,
2019). In terms of data balancing, attempts to gender-balance even monolingual data in
inflected languages struggle with multiple-entity sentences like those in Table 3.1 (Zmigrod
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et al., 2019). The difficulty is compounded for the large bilingual corpora required to train
NMT models. In Sec. 8.3 we discuss the challenges involved in even a simple scheme for
approximate counterfactual data augmentation for NMT.

Finally, all of these approaches involve training the model from scratch. Practically
speaking this is very inefficient, particularly when new sources of bias may be identified at a
later stage or introduced through the retraining process itself.

Addressing bias with context-based features

The idea of controlling machine translation gender inflections with a tag or signal has been
proposed in several forms. Vanmassenhove et al. (2018) incorporate a ‘speaker gender’
tag into training data, allowing gender to be conveyed at the sentence level. However, this
does not allow more fine-grained control, for example if there is more than one referent
in a sentence. Similar approaches from Voita, Serdyukov, et al. (2018) and Basta et al.
(2020) infer and use gender information from discourse context. Moryossef et al. (2019) also
incorporate a single explicit gender feature for each sentence for inference. Miculicich Werlen
and Popescu-Belis (2017) integrate coreference links into machine translation reranking to
improve pronoun translation with cross-sentence context. Stanovsky et al. (2019) propose
NMT gender bias reduction by ‘mixing signals’ with the addition of pro-stereotypical
adjectives. Stafanovičs et al. (2020) use a fine-grained approach in training NMT models
from scratch with all source language words annotated with target language grammatical
gender.

Gender tagging is often effective at controlling the gender inflection of translations, and
tagging can be applied before training or at inference time. However, tags are typically
not introduced during fine-tuning, and existing work typically only measures the change in
performance on the intended targets of gender tags. In Sec. 8.5 we incorporate new gender
tags during fine-tuning and investigate some unintended consequences of gender tagging
methods, as well as proposing mitigating techniques.

3.6.3 Gender bias in NMT as a multi-domain adaptation problem?

The prior work reviewed in this section has almost exclusively involved retraining a model
from scratch. However, we consider the problem of reducing gender bias effects in NMT to
be an excellent candidate for multi-domain adaptation techniques:

• We wish to improve translation performance on sentences with a distinct vocabulary
distribution, which can be interpreted as a domain: sentences containing gendered
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terms which do not correspond to existing social biases, such as female doctors and
male nurses.

• We want the ability to continually adapt to new ‘domains’ in order to reduce the effect
of newly identified bias sources, since it is impossible to pre-determine all possible
sources of harmful bias.

• We wish to avoid retraining from scratch.

• We wish to keep general translation ability obtained from the training on the biased
‘pre-training’ domain.

• We may have to translate test sentences that do not belong to the new ‘domain’. That is,
a given sentence may or may not have any gendered terms to translate that are affected
by gender bias effects.

In Chapter 8 we apply many of the domain adaptation techniques reviewed previously in
this chapter to mitigate the effects of gender bias on NMT.

3.7 Conclusions

Domain adaptation allows NMT models to achieve good performance on language of interest
with very limited training data, and without the cost of training the model from scratch.
Adaptation may even allow better performance than from-scratch training on a given domain,
or on sentences whose domain is unknown.

The remainder of this thesis describes original contributions on the topic of domain
adaptation for NMT. We demonstrate that careful approaches, whether data-centric or involv-
ing more significant changes to the adaptation and inference procedures, can permit strong
improvements on new or unknown translation domains without requiring retraining from
scratch or changes to model architecture. (Sec. 3.3, which discusses approaches that do
involve architecture changes, is included for completion). Many of the contributions follow
on directly from approaches touched on in this chapter (as well as those following on from
the more general NMT literature review in the previous chapter, described in Sec. 2.5):

• In Chapter 4 we explore data-centric schemes for domain adaptation (Sec. 3.2). We
highlight the advantages and disadvantages of varying data only in domain adaptation.

• In Chapter 5 we explore fine-tuning schemes for NMT domain adaptation to mitigate
the catastrophic forgetting problem during domain adaptation (Sec. 3.4). We investigate
the use of L2 and EWC regularization during fine-tuning to avoid forgetting.
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• In Chapter 6 we build on inference techniques for domain adaptation (Sec. 3.5),
extending Bayesian Interpolation to source sentence dependence for domain adaptive
ensembling.

• In Chapter 7 we extend the concept of multi-domain NMT model ensembling (Sec.
3.5) to explore the benefits of ensembles with multiple target representations.

• Chapter 8 frames the gender bias problem in NMT (Sec. 3.6) as a domain adaptation
problem, and explores potential solutions using domain adaptation techniques reviewed
in this chapter: synthetic and partially synthetic dataset construction (Sec. 3.2),
regularized and tagged adaptation (Sec. 3.4) and constrained rescoring (Sec. 3.5).





Chapter 4

Data-centric approaches to domain
adaptation

This chapter draws from the following publications: Saunders, Stahlberg, and Byrne (2019)
in Sec. 4.2, and Saunders and Byrne (2020a) in Sec. 4.3.

4.1 Motivation

As discussed in Sec. 3.1 and Sec. 3.2, a domain can be described by its data. A sentence may
contain elements of one or more topics or genres in terms of vocabulary choice or structural
aspects. The domains of sentences available during training or fine-tuning will affect how
fast the NMT model parameters converge, and the local optimum to which they converge.
During inference, the translation quality for a given test sentence will depend on whether the
model has trained on sentences with similar or different domains.

In this chapter we explore data-centric approaches to domain adaptation in the context
of our submissions to two consecutive years of the WMT biomedical translation task. We
wish to address the first research question raised in Sec. 1.1.1, exploring the effectiveness of
straightforward data-centric approaches to domain adaptation, particularly with regards to
domain robustness and possible side-effects. A large body of existing research explores data
selection and generation for NMT adaptation, as reviewed in Sec. 3.2. Rather than reproduce
such investigations, and since the biomedical task test sets have a known topic1 and genre2,

1Biomedical sciences, although this itself covers a range of other topics: medical descriptions, numerical
results, historical or geographical asides to provide context, etc.

2Medline paper abstracts. Detailed descriptions and sources are given in Bawden, Bretonnel Cohen, et al.
(2019) and Bawden, Di Nunzio, et al. (2020)
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we select fine-tuning data-sets by provenance to illustrate the effects of fine-tuning on either
large, topic-relevant corpora or a small, genre-matched corpus.

In Sec. 4.2 we describe experiments with the widely-used approach of transfer learning
to a new corpus. While treating the provenance of a whole corpus as an accurate indication
of domain for all sentences in the corpus, we show that an iterative approach to transfer
learning across related domains can improve performance. However, we also demonstrate
side-effects in terms of ‘forgetting’ of previously learned domains, even those closely related
to the fine-tuning domain.

In Sec. 4.3 we explore the impact of adapting to a small subset of the in-domain training
data which is particularly similar in genre to a test dataset. We find that this can still further
improve translation quality in some cases, but risks over-exposing the model to degeneracies
in the training data, resulting in exposure bias.

4.2 Iterative transfer learning and the WMT19 biomedical
translation task

This section discusses our participation in the WMT19 biomedical translation task3. NMT
in the biomedical domain presents challenges in addition to general domain translation, as
for many small domains. Available corpora are relatively small, exacerbating the effect of
noisy or poorly aligned training data. Vocabulary can be very topic-specific, so training to
convergence on a single biomedical dataset may not correspond to good performance on
arbitrary biomedical test data. Instead we focus on building strong models over multiple
related domains using iterative transfer learning. These single-domain models can then be
combined in an ensemble during inference.

In this section we treat the provenance of a corpus as indicative of its domain, and adapt
NMT models simply by continuing training the model parameters on labelled corpora. We
use our submissions to the WMT19 biomedical task to demonstrate that the effectiveness
of this apparently straightforward scheme is heavily dependent on data domain. We find
that even ostensibly uniform domains can be sub-divided into more specific domains such
that performance on each sub-domain is measurably different. We attempt to leverage this
domain decomposability to improve domain adaptation purely by selecting and ordering
fine-tuning corpora from different domains, effectively defining a domain curriculum.

3http://www.statmt.org/wmt19/biomedical-translation-task.html

http://www.statmt.org/wmt19/biomedical-translation-task.html
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4.2.1 Iterative transfer learning

Transfer learning for domain adaptation typically involves initial training on a large, general
domain corpus, followed by fine-tuning on the domain of interest. Transfer learning of
this kind is often used to adapt models across domains, e.g. news to biomedical domain
adaptation, or within one domain, e.g. WMT14 biomedical data to WMT18 biomedical data
(Khan et al., 2018). Here, we apply transfer learning either across domains once or between
domains iteratively. We obtain strong models that cover two disparate domains for both
directions of the English-German language pair, and three related and overlapping domains
for both directions of English-Spanish.

Transfer learning for domain adaptation involves using the performance of a model on
some general domain A to improve performance on some other domain B: A → B. However,
if the two domains are sufficiently related, we suggest that task B could equally be used for
transfer learning A: B → A. The stronger general model A could then be used to achieve even
better performance on other tasks: B → A → B, B → A →C, and so on. This is effectively a
domain curriculum which concludes on the domain of interest.

Our WMT19 submission covers English-Spanish and English-German language pairs.
For English-Spanish, we use the domain-labelled Scielo (Neves et al., 2016) dataset to
provide two distinct domains, Health and Biological sciences (‘Bio’), in addition to the
complete biomedical dataset which includes both Scielo domains among other datasets (‘All-
biomed’). We therefore experiment with iterative transfer learning, in which a model adapted
with transfer learning is finally tuned further on the original domain. For English-German
we have only one large labelled biomedical-domain-relevant corpora, and so use standard
fine-tuning from a general domain News model to a single in-domain All-biomed dataset.

4.2.2 Experimental setup

Data

We report on both translation directions for two language pairs: Spanish-English (es-en)
and English-German (en-de). Table 4.1 lists the in- and out-of-domain data used to train

4https://ufal.mff.cuni.cz/ufal medical corpus
5Neves et al. (2016)
6https://github.com/biomedical-translation-corpora/medline (Jimeno Yepes et al., 2017)
7Dušek et al. (2017)
8http://statmt.org/wmt17/translation-task.html
9Sets: http://www.statmt.org/wmt19/translation-task.html. Filtering: Stahlberg, Saunders, de Gispert, et al.

(2019)
10http://www.himl.eu/test-sets

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://github.com/biomedical-translation-corpora/medline
http://www.statmt.org/wmt19/translation-task.html
http://www.himl.eu/test-sets
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Domain Training sets Sentences pairs Dev sets Sentence pairs

es-en

All-biomed

UFAL Medical4 639K

Khresmoi7 1.5K
Scielo5 713K
Medline titles6 288K
Medline abstracts 83K
Total filtered 1291K

Health
Scielo health only 587K

Scielo health 5K
Total filtered 558K

Bio
Scielo bio only 126K

Scielo bio 4K
Total filtered 122K

en-de

News
News corpus 2016-188 92M

Newstest-178 3K
Paracrawl (filtered)9 15M

All-biomed
UFAL Medical 2958K Khresmoi 1.5K
Medline abstracts 33K Cochrane10 467
Total filtered 2156K

Table 4.1 Training and validation data used in the WMT19 biomedical translation task. The
English-German models were additionally pre-trained on very large general-domain datasets
from the WMT19 news translation task. For both language pairs we use identical data when
translating into and from English.

our biomedical domain evaluation systems. For en2de and de2en we additionally reuse
strong general domain News models trained on data made available for the WMT19 news
translation task, including filtered Paracrawl (Bañón et al., 2020). Details of data preparation
and filtering for the News models are discussed more fully in Stahlberg, Saunders, de Gispert,
et al. (2019).

For each language pair we use the same training data in both directions, and use a 32K-
merge source-target BPE vocabulary (Sennrich, Haddow, and Birch, 2016d) trained on the
‘base’ domain training data (news for en-de, Scielo health for es-en)

We preprocess the data using Moses tokenization, punctuation normalization and truecas-
ing. We then use a series of simple heuristics to filter the parallel datasets:

• Detected language filtering using the Python langdetect package11. In addition to
mislabelled sentences, this step removes many sentences which are very short or have
a high proportion of punctuation or HTML tags.

• Remove sentences containing more than 120 tokens or less than 3 tokens.

• Remove duplicate sentence pairs

11https://pypi.org/project/langdetect/

https://pypi.org/project/langdetect/
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• Remove sentences where the ratio of source to target tokens is less than 1:3.5 or more
than 3.5:1

• Remove pairs where more than 30% of either sentence is the same token.

Model, training and inference

We use the Tensor2Tensor (Vaswani, Bengio, et al., 2018b) implementation of the Trans-
former model with the transformer big setup for all NMT models. By default this model
size limits batch size of 2K due to memory constraints. We delay gradient updates by a factor
of 8, letting us effectively use a 16K batch size (Saunders, Stahlberg, de Gispert, et al., 2018).
We train each domain model until it fails to improve on the in-domain validation set for three
consecutive checkpoints, then perform checkpoint averaging over the final 10 checkpoints to
obtain the final model (Junczys-Dowmunt et al., 2016).

At inference time we decode with beam size 4 using the SGNMT toolkit (Stahlberg,
Hasler, Saunders, et al., 2017). For validation results we report cased BLEU scores with
SacreBLEU (Post, 2018)12. These are the inference settings used throughout this thesis
unless specified otherwise. Test results use case-insensitive BLEU to correspond to results
released by the organizers.

4.2.3 WMT19 biomedical translation experiments

Iterative transfer learning improves over training on shuffled domains

Transfer learning schedule es2en en2es
Khresmoi Health Bio Khresmoi Health Bio

1 All-biomed 49.8 35.4 35.7 43.4 33.9 37.5
2 Health → All-biomed 52.1 36.7 37.0 44.2 35.0 39.0
3 Health 45.1 35.7 34.0 41.2 34.7 36.1
4 All-biomed → Health 48.9 36.4 35.9 43.0 35.2 38.0
5 Health → All-biomed → Health 51.1 37.0 37.2 44.0 36.3 39.5
6 Bio 37.4 29.3 35.8 36.0 30.1 39.5
7 All-biomed → Bio 48.0 34.6 37.2 43.2 34.1 40.5
8 Health → Bio 45.1 35.0 37.0 42.3 34.7 40.1
9 Health → All-biomed → Bio 50.6 36.0 38.0 45.2 35.3 41.3

Table 4.2 Development set BLEU for English-Spanish models with transfer learning. In
each case transfer learning from another domain improves final performance on the relevant
development set.

12SacreBLEU signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.3.2
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Fig. 4.1 Transfer learning for es2en domains. Top: standard transfer learning improves
performance from a smaller (Health) to a larger (All-biomed) domain. Bottom: returning to
the original domain after transfer learning provides further gains on Health.

Our iterative transfer learning experiments cover es2en and en2es to obtain models on
three separate domains for evaluation. We use Health as the initial domain to train from
scratch. We choose Health over All-biomed because it is significantly smaller and is more
consistent in terms of topic and genre than the All-biomed set, which we expect would be
harder to fit. We choose Health over Bio as it is four times larger and correspondingly likely
to contain more varied language.

Once the Health model has converged on the Health validation set, we use it to initialize
training on the larger, more diverse All-biomed corpus. When this transfer-learned All-
biomed model has converged, we finally use it to initialize training on the Health data and
Bio data separately for stronger models on those domains. Figure 4.1 shows the training
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progression on Health and All-biomed validation sets. We also show training curves for
the more typical transfer learning approach of training from scratch on All-biomed, which
contains all other datasets, before fine-tuning on the narrower-domain Health data.

Table 4.2 gives single model validation scores for es2en and en2es models with standard
and iterative transfer learning for various curricula that each end on the same domain. We
find that the All-biomed domain gains 1-2 BLEU points when fine-tuned from the Health
domain (line 2 vs line 1). Moreover, the Health and Bio domains benefit from iterative
transfer learning (lines 5 and 9) relative to training from scratch (lines 3 and 6) and relative to
standard transfer learning (lines 4, 7 and 8). These models benefit from a domain curriculum
despite being trained more than once to convergence on the final domain in the iterative
transfer learning case.

The results for the Health and Bio validation sets are worth highlighting in terms of
the focus of this thesis on multi-domain performance. Why does All-biomed, the largest
domain, not simply out-perform the other domains? All-biomed contains both the Health
and Bio training data, and so has been trained on the same relevant training examples as the
other models. However, the presence of other training data changes the All-biomed model’s
convergence. Results in line 1 on the domain-specific Health and Bio validation sets are
even slightly weaker compared to models trained only on the Health (line 3) or Bio (line
6) subsets, let alone the stronger models that converge on those sets. This is despite all
test and training domains under consideration being strongly related. This result illustrates
that simply training a new model to convergence on all available data indiscriminately will
not necessarily achieve the best performance on any specific sub-domain, even if such an
approach was computationally practical.

Relatedly we notice some forgetting effects even with such strongly-related domains,
or when fine-tuning on a subset of the pre-training domain. For example, in Table 4.2 the
All-biomed → Health model (line 4) gains 1 BLEU on the Health validation set relative
to the All-biomed model (line 1) that initializes it. However, it loses 0.9 BLEU relative to
All-biomed on the more general Khresmoi set. We will discuss this forgetting effect and
ways to mitigate it further in later chapters of this thesis.

Multi-domain ensembles perform well across domains

Table 4.3 gives validation and WMT19 biomedical test results for the models involved in
the submission. Our first submission is the best All-biomed domain model, as the most
topic-robust biomedical model, and our second is a uniform ensemble of all three models.
By ‘uniform’ we mean that equal weighting is given to the predictions from each ensemble
component during inference. Interestingly, the ensemble achieves approximately the same
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es2en en2es
Khresmoi Health Bio Test Khresmoi Health Bio Test

1: Health → All-biomed 52.1 36.7 37.0 42.4 44.2 35.0 39.0 44.9
1 → Health 51.1 37.0 37.2 - 44.0 36.3 39.5 -
1 → Bio 50.6 36.0 38.0 - 45.2 35.3 41.3 -
Uniform ensemble 52.2 36.9 37.9 43.0 45.1 35.6 40.2 45.4

Table 4.3 Validation and test BLEU for models involved in English-Spanish language pair
submissions.

de2en en2de
Khresmoi Cochrane Test Khresmoi Cochrane Test

News 43.8 46.8 - 30.4 40.7 -
News → All-biomed 44.5 47.6 27.4 31.1 39.5 26.5
Uniform ensemble 45.3 48.4 28.6 32.6 42.9 27.2

Table 4.4 Validation and test BLEU for models used in English-German language pair
submissions.

result on each validation set as the best performing single model for es2en. For en2es the
single Health and Bio models outperform the ensemble. For the test set, the ensemble
improves by approximately 0.5 BLEU over the All-biomed model in both cases.

For English-German the initial and adapted domains – News and Biomedical respectively
– are quite distinct. However, results in Table 4.4 show the strong initial out-of-domain model
performing reasonably on in-domain data – less than 1 BLEU difference from the in-domain
adapted model. This suggests that strength of general translation ability can in some sense
make up for lack of domain-specific training examples. Moreover, a uniform ensemble of
the two models gains 0.8 and 0.7 BLEU respectively over the in-domain model. This is a
slightly clearer benefit than the 0.6 and 0.5 BLEU improvements from the English-Spanish
results for three-model in-domain ensembles.

4.2.4 WMT19 biomedical translation task summary

Our WMT19 Biomedical submission covers the English-German and English-Spanish lan-
guage pairs. For English-Spanish we use transfer learning iteratively to train single models
which perform well on related but distinct domains. For English-German we adapt once
to a relevant domain. In both cases we show further gains from multi-domain ensembles.
However, simple transfer learning reduces performance on the pre-training domain even
when that domain is very similar to the fine-tuning domain or is a superset of the fine-tuning
data.
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4.3 Genre-specific fine-tuning and the WMT20 biomedical
translation task

In this section we discuss our participation in the WMT20 biomedical translation task13. We
again submit translations for both directions of the English-German and English-Spanish
language pairs. While the WMT19 submission involved training multiple models by transfer
learning on related but distinct domains, we here describe a contrastive approach. We
fine-tune existing strong models only on a single small, genre-matched adaptation set.

This is a popular approach for machine translation fixed-domain evaluations like the news
and biomedical shared tasks. A common example is tuning on test sets released for the same
shared task in previous years (Koehn, Duh, et al., 2018; Schamper et al., 2018; Stahlberg,
Saunders, de Gispert, et al., 2019). It is a relatively efficient approach: adaptation sets might
have only tens of thousands of sentence pairs, compared to millions of sentence pairs used to
train the original model. The adaptation sets are also likely to contain sentences stylistically
very similar to those in the test set.

For our submissions we start with the strong All-biomed models trained with iterative
transfer learning for the WMT19 biomedical task (Tables 4.3 and 4.4), and adapt them further
to Medline abstract training data (Bawden, Bretonnel Cohen, et al., 2019). This is a small
and highly relevant training set, allowing extremely fast adaptation with the potential to let
the NMT model adapt strongly to the domain of interest.

However, fine-tuning on relevant but small corpora has pitfalls. The small number of
training examples exacerbates the effect of any noisy or poorly aligned sentence pairs. As
well, overconfidence from over-fitting to a small, regular training set can result in poor
translation hypotheses at test time. We use this section to highlight the potential benefits of
small-dataset fine-tuning, as well as the potential risks of this type of exposure bias.

4.3.1 Small domain fine-tuning and exposure bias

Exposure bias for an autoregressive sequence decoder refers to a discrepancy between
decoder conditioning during training and inference, reviewed in Sec. 2.3. Previous work
has interpreted the risk of exposure bias primarily in terms of the model over-relying on
correct gold target translations, resulting in error propagation when mistakes are made during
inference. Here we focus instead on mistakes or misalignments in the training data which
harm the model through teacher-forcing exposure. We suggest that exposure to this kind of
imperfect training data can cause the model to make related mistakes during inference.

13http://www.statmt.org/wmt20/biomedical-translation-task.html

http://www.statmt.org/wmt20/biomedical-translation-task.html
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Sentences affected by exposure bias can be difficult to identify, particularly when the
bias is partially caused by unreliable reference sentences. For this investigation we identify a
specific feature of the Medline abstract training data which triggers noticeable translation
errors after fine-tuning. The data contains instances in which either the source or target
sentence contains the correct translation of the other sentence, but adds information that is
not found in translation. For example, the following sentence appears in the English side of
en-de Medline abstract training data:

[The effects of Omega-3 fatty acids in clinical medicine]. Effects of Omega-3 fatty acids
(n-3 FA) in particular on the development of cardiovascular disease (CVD) are of major
interest.

The aligned German sentence is:
Der Nutzen von Omega-3-Fettsäuren (n-3-FS) in der Medizin, hauptsächlich in der

Prävention kardio- und zerebrovaskulärer Erkrankungen, wird aktuell intensiv diskutiert.
(Translated: ‘The uses of Omega-3 fatty acids in medicine, especially in prevention of
cardiovascular and cerebrovascular diseases, are currently heavily discussed.’)

Some of the English sentence is present in the German translation, but the square-
bracketed article title is not. In this example it might be possible to remove only the segment
in square brackets, but in other examples there is even less overlap, while source and target
sentences may still be related and therefore challenging to filter. For example, the following
English and German sentences also correspond with still less overlap:

[Conflict of interest with industry–a survey of nurses in the field of wound care in Germany,
Australia and Switzerland]. Background.

Hintergrund: Pflegende werden zunehmend von der Industrie umworben. (Translated:
‘Background: Nurses are being increasingly courted by industry.’)

These examples are relatively frequent in Medline abstract data, especially in the form
of titles. It is common to insert the English title of a non-English article into its translation,
marked with square brackets (Patrias and Wendling, 2007). The title is however not present in
the original non-English article14. This can cause models trained on English source sentences
with titles to behave erratically when given sentences with square-bracketed titles at test time:
an exposure bias effect.

One possible approach to this problem is simply removing tokens that trigger exposure
bias from test sentences as a pre-processing step before inference. In the case of Medline
abstracts, this means no square brackets for inference. Another approach is aggressively

14It is not unusual for human translators to add or discard information when translating (Darwish and
Sayaheen, 2019; Puurtinen, 2003). This is a strong motivation for use of multiple human references when
evaluating with BLEU, but such additional references are rarely available (Song, Cohn, et al., 2013).
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filtering sentences which may be poorly aligned. However, with such a small training set,
this risks losing valuable examples of domain-specific source and target language.

It is also important to note that square-bracketed title translations are not the only case of
inexact training pairs, but are simply easily identifiable. Other less frequent examples might
include unusual capitalization, or presence of non-translated words. One such case is in the
first example given above, where ‘cerebrovascular’ is not included in the English sentence.
The exact fine-tuning and test sets will determine specific exposure bias effects. Where
the triggering feature is less obvious than title demarcation with square brackets, simple
data-based techniques like filtering or inference-time pre-processing will be less effective.

We note that title translations are often removed from human references for the WMT
biomedical task, precisely because they are often not well-aligned to the rest of the translated
document. In these cases failure to translate the title will not negatively impact BLEU.
However, we believe a biomedical translation model should be able to translate such sentences
if required.

4.3.2 Experimental setup

Data

Phase Training sets Sentence pairs Dev sets Sentence pairs

en-es

Pre-training

UFAL Medical 639K

Khresmoi 1.5K
Scielo 713K
Medline titles 288K
Medline abstracts 83K
Total 1291K

Fine-tuning Medline abstracts 67.5K Biomedical19 825

en-de
Pre-training

UFAL Medical 2958K Khresmoi 1.5K
Medline abstracts 33K Cochrane 467
Total 2156K

Fine-tuning Medline abstracts 28.6K Biomedical19 808
Table 4.5 Biomedical training and validation data used in the WMT20 task (en-de models
originally fine-tuned from News domain models as described in previous section). For both
language pairs identical data was used in both directions. Bolded numbers are totals after
filtering. Data sources are as for Table 4.1.

In this section we discuss the first part of our investigation into exposure bias connected
to our WMT20 biomedical task submission. This consists of experiments adjusting data only,
and results on validation data only. Our final submitted systems with results on the WMT20
test sets will be discussed in Chapter 5.
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We report on two language pairs: English-Spanish (en-es) and English-German (en-
de). Table 4.5 lists the data used to train our biomedical domain evaluation systems. BPE
vocabularies and pre-training data are as for the WMT19 task (Sec. 4.2.2).

All of our approaches involve fine-tuning pre-trained models. We initialize fine-tuning
with the All-biomed models obtained via iterative transfer learning (Tables 4.3 and 4.4).
We fine-tune these models on Medline abstracts data. We validate on test sets from the
2019 Biomedical task, concatenating the source-target and target-source 2019 test sets for
each language pair, and selecting only the ‘OK’ aligned sentences as determined by the
organizers15. For each language pair we use the same fine-tuning data in both directions, and
preprocess all data with Moses tokenization, punctuation normalization and truecasing.

Before fine-tuning we carry out detected language filtering on the Medline abstracts
fine-tuning data using LangDetect, as for the 2019 task. However, for these training sets
we find LangDetect has a tendency to incorrectly label short sentences or those with rare
vocabulary (very common in Medline abstracts) as a random language. For each language
pair we therefore filter out only sentences where LangDetect identifies the source sentence
as belonging to the target language, and vice versa. We otherwise use the same filtering
heuristics as for the WMT19 task (Sec. 4.2.2).

For the more aggressively-filtered ‘no-title’ experiments we additionally remove all lines
containing multiple tokens in square brackets, which in medical writing are used to denote
the English translation of a non-English article’s title. This leaves 27.3K sentence pairs for
en-de and 64.8K for en-es: about 96% of the filtered data in both cases.

Model, training and inference

Model architecture, training and inference procedure are as for the WMT19 task. For
each approach we fine-tune on a single GPU, saving checkpoints every 1K updates, until
fine-tuning validation set BLEU fails to improve for 3 consecutive checkpoints. Generally
this took about 5K updates. We use a 4K effective batch size16, which we found gave
good performance on this small adaptation set. We then perform checkpoint averaging
(Junczys-Dowmunt et al., 2016) over the final 3 checkpoints to obtain the final model.

We decode with beam size 4 using SGNMT. Validation scores are for case-insensitive,
detokenized text obtained using SacreBLEU to correspond more closely to test Medline
scores.

15Means of determining ‘OK’ sentences discussed in Bawden, Bretonnel Cohen, et al. (2019)
161K token batches with gradient updates delayed by a factor of 4
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4.3.3 WMT20 biomedical translation experiments

Fine-tuning on a small, genre-matched dataset can lead to BLEU score gains

de2en en2de es2en en2es
1 Baseline 38.8 30.6 48.5 46.6
2 Fine-tuning from 1 40.9 32.5 48.5 46.0
3 Fine-tuning from 1, no-title 40.9 32.2 47.0 44.9
4 Checkpoint averaging 1 38.7 30.5 48.5 47.1
5 Checkpoint averaging 2 41.1 32.2 48.0 45.9
6 Checkpoint averaging 3 41.4 31.8 48.2 46.3

Table 4.6 Validation BLEU developing models used in English-German and English-Spanish
language pair submissions. Scores for lines 1-3 are for the final individual checkpoint saved
during fine-tuning on Medline abstracts data, with or without ‘title’ lines.

We first adapt the model to the full title-included Medline training set. Lines 1 and
2 in Table 4.6 show that small-domain fine-tuning can lead to over-fitting and reduced
performance (en2es) but also potentially significant gains (en2de, de2en), depending on
the quality of the original system. We note that the Medline abstracts training sets are also
present in the All-biomed corpora used to train the baselines for these experiments. As in
the previous section, tuning on a domain-specific subset of a previously-seen dataset has the
potential to improve BLEU scores.

Checkpoint averaging (reviewed in Sec. 2.4.3) is a simple post-training scheme that
often improves robustness to training on very variable datasets. We find that this procedure
increased validation set BLEU for the en2es baseline, leaving validation BLEU performance
mostly unchanged or decreasing in the other cases. The relative performance of baseline
versus fine-tuned models is largely unchanged by checkpoint averaging.

Over-fitting to imperfect data can cause exposure bias effects

Even fine-tuning which increases BLEU scores can trigger exposure bias as a side-effect.
Table 4.7 demonstrates the different behaviour of fine-tuned models when training with or
without the mismatched sentences, or when performing inference without the triggering
tokens. The baseline model gives reasonable translations, although the second translation
example misses some vocabulary. Fine-tuning on the full abstracts set introduces exposure
bias effects, even though BLEU on this set increases by 1.7 points.

In the first example, the fine-tuned hypothesis is completely unrelated to the source
sentence. In the second example, the fine-tuned output is more plausible and therefore
misleading. It misses the initial clause completely, and is phrased like the opening sentence
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System German hypothesis Approximate English translation
English source [Associations of work-related strain with subjective sleep quality and individual

daytime sleepiness].
Human translation [Zusammenhang von arbeitsbezogenen psychischen Beanspruchungsfolgen mit

subjektiver Schlafqualität und individueller Tagesschläfrigkeit.]
Baseline [Assoziationen arbeitsbedingter Belastung

mit subjektiver Schlafqualität und individu-
eller Tagesschläfrigkeit].

[Associations of work-related stress
with subjective sleep quality and indi-
vidual daytime sleepiness.]

Fine-tuning Zusammenfassung. Summary
No square brackets
for inference

Assoziationen arbeitsbedingter Belastungen
mit subjektiver Schlafqualität und individu-
eller Tagesschläfrigkeit.

Associations of work-related stress with
subjective sleep quality and individual
daytime sleepiness.

Fine-tuning, no title
data

[Assoziationen arbeitsbedingter Belastung
mit subjektiver Schlafqualität und individu-
eller Tagesschläfrigkeit].

[Associations of work-related stress
with subjective sleep quality and indi-
vidual daytime sleepiness].

English source [Effectiveness of upper body compression garments under competitive condi-
tions: a randomized crossover study with elite canoeists with an additional case
study].

Human translation [Effektivität von Oberkörperkompressionsbekleidung unter Wettkampfbedin-
gungen: eine randomisierte Crossover-Studie an Elite-Kanusportlern mit einer
zusätzlichen Einzelfallanalyse.]

Baseline [Wirksamkeit von
Oberkörperkompressionsbekleidungsstücken
unter kompetitiven Bedingungen: Eine
randomisierte Crossover-Studie mit Elite-
Kanuten mit einer Additionsstudie].

Effectiveness of upper body compres-
sion garments under competitive con-
ditions: a randomized crossover study
with elite canoeists with an addition
study.

Fine-tuning Eine randomisierte Crossover-Studie mit
Elite-Kanuten mit einer Additional Case
Study wurde durchgeführt.

A randomized crossover study with elite
canoeists with an additional case study
was carried out.

No square brackets
at inference

Effektivität von Oberkörper-
Kompressionsbekleidungsstücken unter kom-
petitiven Bedingungen: Eine randomisierte
Crossover-Studie mit Spitzenkanuten mit
einer zusätzlichen Fallstudie.

Effectiveness of upper body compres-
sion garments under competitive con-
ditions: a randomized crossover study
with leading canoeists with an addi-
tional case study.

Fine-tuning, no title
data

[Effektivität von
Oberkörperkompressionsbekleidungsstücken
unter kompetitiven Bedingungen: Eine
randomisierte Crossover-Studie mit Elite-
Kanuten mit einer Additional Case Study].

[Effectiveness of upper body compres-
sion garments under competitive con-
ditions: a randomized crossover study
with elite canoeists with an additional
case study]

Table 4.7 Two sentences from the English-German 2020 test set with hypothesis translations
from various models (title casing removed for clarity). Examples demonstrate the effects of
exposure bias from fine-tuning on imperfectly aligned training sentences. Notable hypothesis
departures from the reference are emphasized.
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of a paper rather than as a title. It also features the untranslated phrase ‘Additional Case
Study’.

We suggest two data-based schemes for coping with this. The first is inference-time
preprocessing to remove triggering (square-bracket) tokens. The second fine-tunes instead
on a ‘no-title’ version of the adaptation set with misaligned title sentence pairs aggressively
filtered away. As can be seen in Table 4.7, both approaches are effective at reducing exposure
bias effects.

We find that preprocessing to remove square brackets leaves other sentences unchanged,
and has negligible effect on BLEU score since the affected sentences rarely have human
references. By contrast, a model fine-tuned on the filtered data must translate all sentence
pairs, and can impact overall BLEU either positively or negatively. We therefore also report
validation BLEU with this model in lines 3 and 6 of Table 4.6.

Fine-tuning on filtered data gives slightly better results than fine-tuning on unfiltered data
for de2en with checkpoint averaging, as can be seen in line 6 of Table 4.6. Since the added
information in ‘title’ sentences is on the English side, this suggests that training on a target
sentence with extra information may harm translation.

However, filtering these sentences results in performance degradation as measured by
BLEU for the en2de model. This result suggests that these can be valuable training examples
when the extra information is on the source side. In other words, source side additive
noise may improve NMT model robustness. By contrast removing the information – source
side noise in the form of deletions – harms performance. We note that prior work on
back translation for NMT similarly finds that applying noise to source sentences improves
translation performance. However such work has found that deletions are also useful for
noising back translation, perhaps because back translation may tend towards over-generation
(Edunov et al., 2018b).

4.3.4 WMT20 biomedical translation task summary

Our WMT20 Biomedical submission investigates improvements on the English-German and
English-Spanish language pairs under a single strong model. In particular, we focus on the
behaviour of models trained on sentences with some predictable irregularities. We find that
aggressively filtering target sentences can help overall performance, but that aggressively
filtering source sentence tends to hurt performance. We also highlight that such data-centric
approaches to exposure bias effects are dependent on knowledge of the ‘problem’ sentences,
and are therefore not applicable in all cases.
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4.4 Conclusions

This chapter presents data-centric approaches to changing NMT model behaviour. Our
examples revolve around selecting data labelled as domain relevant in terms of provenance,
topic and/or genre, then adapting a model by means of some determined domain curriculum.
These techniques lead to strongly performing individual systems used in submissions to
WMT biomedical evaluation campaigns. Further development of the final models used in
these submissions as well as analysis of the evaluation results will be discussed in Sec. 5.3.3
and 6.3.2.

Domain adaptation via model fine-tuning has been heralded as a simple and easy solution
to the problem of unseen data or a new domain (Federico, 2018). However, such approaches
can themselves introduce potentially serious performance degradation. We have therefore also
highlighted the disadvantages of these purely data-centric approaches to domain adaptation.
One disadvantage is forgetting: a model adapted to one domain will experience performance
degradation on domains it previously translated well. Another disadvantage is the risk of
domain mismatch and exposure bias, particularly when fine-tuning on small or easily over-
fitted datasets. This can be addressed with data-centric techniques such as careful filtering or
preprocessing, but such schemes require foreknowledge of the problematic sentence pairs.
We will explore alternative options in Chapters 5 and 6.



Chapter 5

Training schemes to mitigate side-effects
of NMT domain adaptation

This chapter draws from the following publications: Saunders, Stahlberg, de Gispert, et al.
(2019) in Sec. 5.2, and Saunders, Stahlberg, and Byrne (2020) and Saunders and Byrne
(2020a) in Sec. 5.3. Some results in Sec. 5.2 are from my contributions to Stahlberg, Saunders,
de Gispert, et al. (2019)

5.1 Motivation

Neural Machine Translation (NMT) models often reach good performance on their training
domain. However, the domain of sentences presented at inference time may differ from any
training domain data. In this case of domain mismatch even models with strong performance
on a broad domain can translate poorly. As explored in Chapter 4, data-centric approaches
to this problem generally involve selecting some additional dataset related to the domain
of interest and using the new data to fine-tune the model. However, purely data-centric
approaches to domain adaptation can lead to new difficulties. In this chapter we focus on two
problems in particular.

The first problem, ‘catastrophic forgetting’, occurs when translating the original domain.
If a model with strong performance on domain A is fine-tuned on domain B, it often gives
strong translation performance on domain B at the expense of extreme performance degra-
dation on domain A. This is especially problematic when the domain of the test data is not
known or may change over time. Ideally, a single model would be capable of translating text
from multiple domains, regardless of when during training a given domain was learned.
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The second problem, ‘exposure bias’, occurs when translating the new domain. It is
particularly common when the fine-tuning dataset is small or very regular but still contains
small irregularities such as misaligned sentences or idiosyncratic vocabulary use. This can
cause problematic behaviour when the model is presented with new test data. In Sec. 4.3,
we presented an example where almost every source sentence containing text in square
brackets corresponded to a target sentence containing broadly unrelated text. The model
then translated test sentences with square brackets also into unrelated text. Exposure bias is
particularly relevant in cases of domain mismatch, where the test sentence domain is distinct
from the fine-tuning domain (Wang and Sennrich, 2020).

In this chapter we explore variations on fine-tuning procedures for NMT domain adapta-
tion. We focus on adaptation schemes that can address these two problems without varying
the adaptation dataset itself. Our aim is to address the second research question raised in
Sec. 1.1.1 by investigating adaptation schemes that make good use of a given adaptation set
while avoiding the negative side-effects of fine-tuning. We also touch on the third research
question: robustness to unknown or mismatched domain test sentences.

In Sec. 5.2 we apply various regularized adaptation objectives during domain adaptation
to address the catastrophic forgetting problem and to allow multi-domain adaptation. In
Sec. 5.3 we develop a robust form of discriminative training, doc-MRT. Doc-MRT allows
performance improvements during model fine-tuning, and is effective at reducing exposure
bias effects in fine-tuning for the previously discussed WMT20 biomedical task.

5.2 Regularized adaptation: addressing the ‘catastrophic
forgetting’ problem

This section describes our exploration of parameter regularization schemes for NMT domain
adaptation. Our aim is to allow translation of new domains while preserving performance
on previously learned domains. Parameter regularization achieves this by holding model
parameters close to their pre-trained values. This requires storing the pre-trained parameters
during adaptation, but has no computational impact during inference and potentially allows
minimal or no catastrophic forgetting of previously learned domains.

Several parameter regularization schemes have previously been applied to NMT domain
adaptation, as reviewed in Sec. 3.4.2. In this section we focus on two related schemes:
L2 regularization and EWC regularization. We include comparisons to straightforward
non-regularized fine-tuning, as well as checkpoint averaging (reviewed in Sec. 2.4.3). Unlike
regularized fine-tuning, checkpoint averaging is applied after training and is domain-agnostic.
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However, it has a similar effect to regularized fine-tuning, in that it tends to ‘smooth’ any
parameter fluctuations or variation from earlier versions of the model included in averaging.

We explore forgetting across both related domains and very distinct domains for English-
to-German and English-to-Spanish translation, including the case of adapting sequentially
to three domains, and find that EWC outperforms L2 regularization. We find that applying
EWC regularization only to model embeddings can still significantly reduce forgetting. We
finally show that EWC can allow translation improvements when fine-tuning a strong model
on a small, trusted dataset which has the same domain as the original model.

5.2.1 L2 Regularization and Elastic Weight Consolidation

We briefly re-introduce regularized fine-tuning for domain adaptation with the terminology
and implementation choices used in our experiments. In all cases we assume an NMT model
is first trained to convergence on some pre-training task PT . Importantly, this does not
necessarily mean training on a single corpus. PT can cover multiple domains, whether via
sequential adaptation or by adapting to mixed datasets.

During domain adaptation, pre-trained parameters θ PT are fine-tuned on some new
domain. Without regularization, catastrophic forgetting can occur: performance degradation
on domains only covered by pre-training as parameters adjust to the new objective. A
regularized objective is:

L(θ) = LCE(θ)+Λ∑
j

Fj(θ j −θ
PT
j )2 (5.1)

where LCE(θ) is the cross-entropy loss when training on the new task. In this section we
compare three cases:

• No-reg, where Λ = 0

• L2, where Fj = 1 for each parameter index j

• EWC, where Fj = E
[
∇2LCE(θ

PT
j )

]
, a sample estimate of task PT Fisher information.

This effectively measures the importance of θ j to pre-training task PT .

For L2 and EWC we tune Λ on the validation sets for new and pre-training tasks to
balance forgetting against new-domain performance.
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5.2.2 Experimental setup

Data

We report on Spanish-to-English (es-en) and English-to-German (en-de) translation. For es-
en we use the Scielo corpus (Neves et al., 2016), with Health as the general domain, adapting
to Biological Sciences (‘Bio’). We hold out 1K randomly selected sentence pairs from each
labelled training corpus to act as a validation set. We evaluate on the domain-labeled Health
and Bio 2016 test data.

The en-de general domain is News. We train on data made available for the 2018 WMT
news translation shared task (Bojar, Federmann, et al., 2018), with all data except ParaCrawl
oversampled by 2 (Sennrich, Birch, et al., 2017). We validate on the WMT news task WMT17
test set and evaluate on WMT18. We adapt first to the IWSLT TED talks task, validating on
the 2015 test set and evaluating on the 2016 test set (Cettolo, Niehues, Stüker, Bentivogli,
Cattoni, et al., 2016), and then sequentially to the WMT IT corpus, using the provided dev
and test set from the 2017 APE task (Turchi et al., 2017).

We filter training sentences for minimum three tokens and maximum 120 tokens, and
remove sentence pairs with length ratios higher than 4.5:1 or lower than 1:4.5. Table 5.1
shows filtered training sentence counts. Each language pair uses a joint source-target 32K-
merge BPE vocabulary trained on the general domain (Sennrich, Haddow, and Birch, 2016d).

Language pair Domain Training Dev Test

es-en
Health 586K 1K 5K
Bio 125K 1K 4K

en-de
News 22.1M 3K 3K
TED 146K 1.1K 1.1K
IT 11K 1K 2K

Table 5.1 Corpora sentence pair counts

Model, training and inference

We use the Tensor2Tensor (Vaswani, Bengio, et al., 2018b) implementation of the Trans-
former model with the transformer base setup for all NMT models with a 4K token batch
size. We note that the different hyperparameter choices1 result in different scores compared
to baseline models on the same language pairs and domains in the previous chapter.

1The transformer base model has embedding size 512 and 8 attention heads, while transformer big

has embedding size 1024 and 16 heads. We use smaller models for speed and storage efficiency when not
preparing systems for evaluation campaigns.
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We determine regularization weight Λ for L2 and EWC by tuning on the validation sets.
When adapting via EWC sequentially to a third en-de domain, we re-estimate the Fisher
information over data from both pre-training domains. We estimate the Fisher information for
EWC with pre-training model parameters frozen. The data used for estimation is a random
sample of 1K mini-batches from the es-en Health training dataset, and over 5K mini-batches
for the much larger en-de News and News + TED training datasets.

We adapt for the same number of mini-batch updates with all fine-tuning schemes. For
results with checkpoint averaging we obtain the final model by averaging over the final 10
checkpoints. At inference time we decode with beam size 4 in SGNMT and evaluate with
case-sensitive detokenized BLEU using SacreBLEU.

5.2.3 Regularized adaptation experiments

Checkpoint averaging is complementary to regularized fine-tuning

Fig. 5.1 Combined Health + Bio validation set BLEU when tuning Λ for es-en

We first describe the process for setting regularization weight Λ (Eq. 5.1). This is required
for both EWC and L2. As part of this experiment, we compare validation results with and
without checkpoint averaging. Figure 5.1 shows an example of tuning for es-en.

We tune on combined Health and Bio validation BLEU for inference with the final
checkpoint and with averaged checkpoints over the final 10K training steps. Although we
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select for the best combined result over domains, Λ can also be adjusted to for better new
domain or pre-training domain performance as desired.

Model checkpoints from earlier in fine-tuning experience less forgetting, so averaging
earlier and later checkpoints may give additional regularization. Figure 5.1 indicates that
this is indeed the case. Checkpoint averaging gives a small regularization effect compared
to L2 and EWC, and affects both schemes similarly. We report our following results with
checkpoint averaging, except when adapting to the IT dataset where fine-tuning is extremely
brief.

EWC gives less forgetting and better in-domain performance than L2 regularization

Training scheme Health Bio
1 Health 35.9 33.1
2 Bio 29.6 36.1
3 Health and Bio 35.8 37.2
4 1 then Bio, No-reg 30.3 36.6
5 1 then Bio, L2 35.1 37.3
6 1 then Bio, EWC 35.2 37.8

Table 5.2 Test BLEU for es-en adaptive training. EWC reduces forgetting compared to other
fine-tuning methods, while offering the greatest improvement on the new domain.

Training scheme News TED IT
1 News 37.8 25.3 35.3
2 TED 23.7 24.1 14.4
3 IT 1.6 1.8 39.6
4 News and TED 38.2 25.5 35.4
5 1 then TED, No-reg 30.6 27.0 22.1
6 1 then TED, L2 37.9 26.7 31.8
7 1 then TED, EWC 38.3 27.0 33.1
8 5 then IT, No-reg 8.0 6.9 56.3
9 6 then IT, L2 32.3 22.6 56.9

10 7 then IT, EWC 35.8 24.6 57.0
Table 5.3 Test BLEU for en-de adaptive training, with sequential adaptation to a third task.
EWC-tuned models give the best performance on each domain.

We wish to improve performance on new domains without reduced performance on
the general domain. For es-en results in Table 5.2, the Health and Bio tasks overlap, but
catastrophic forgetting still occurs under no-reg (line 3). Regularization reduces forgetting
and allows further improvements on Bio over unregularized fine-tuning. We find EWC (line
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6) outperforms the L2 approach proposed for NMT adaptation by Barone et al. (2017) (line
5), both in terms of learning the new task and for reducing forgetting.

In the en-de News/TED task (Table 5.3), all fine-tuning schemes give similar improve-
ments on TED. One notable difference is the relative performance on the pre-training News
domain. EWC (line 7) outperforms both no-reg (line 5) and L2 (line 6) on News, not only
reducing forgetting but giving 0.5 BLEU improvement over the baseline News model. Using
EWC for domain adaptation may therefore be particularly advantageous when the original
and fine-tuning domains are similar.

The IT dataset is very small: training on IT data alone results in over-fitting, with a 17
BLEU improvement as well as forgetting of the previous tasks under no-reg fine-tuning (line
8). EWC (line 10) reduces forgetting on two previous tasks while further improving on the
target domain.

EWC can still perform well if only applied to embeddings

For every parameter θ j regularized by EWC, the model must store values for θ PT
j and Fj.

Reducing the number of regularized parameters is therefore a question of practical interest.
Also of practical interest is convergence rate under EWC. All regularization schemes in Table
5.3 are adapted for the same number of epochs over each dataset, but we are also interested
in the performance of EWC when adaptation time is limited.

We focus on News-to-TED tuning as in other cases some level of forgetting occurs even
with full EWC regularization. By contrast, for News to TED adaptation scores improve on
both domains. The News test set score increases by 0.5 BLEU after fine-tuning on TED with
EWC regularization, despite the same score decreasing by over 7 BLEU after fine-tuning
with no regularization.

Table 5.4 gives News and TED test BLEU scores when applying EWC regularization to
different model subnetworks. Models are adapted for fewer steps than in Table 5.3, allowing
us to explore relative convergence rates. Results with no-reg adaptation are approximately
unchanged on TED, and results with EWC applied to all parameters are unchanged on News.
However, as we might expect, shorter no-reg fine-tuning means less forgetting of News, and
shorter EWC (all parameters) adaptation means lower scores on the new domain.

Interestingly, it appears that good results on both domains are possible even with a shorter
adaptation period by applying EWC only to embedding parameters, with other parameters
able to vary without regularization. Applying EWC only to the encoder or decoder has almost
no effect on catastrophic forgetting. However, the best results in terms of reduced forgetting
still come when EWC is applied to all parameters, even in the case of longer adaptation given
in Table 5.3.
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EWC-regularized parameters News TED
Baseline 37.8 25.3
None (No-reg) 34.4 27.2
All 38.3 26.6
Encoder only 34.4 26.9
Decoder only 34.6 26.8
Embeddings only 38.0 27.2

Table 5.4 Test BLEU for en-de adaptation from the News domain to the the TED domain,
applying EWC regularization only to subsets of the Transformer model parameters. All other
parameters vary freely. These models are adapted to TED for fewer steps than models in
Table 5.3 to highlight the effect of EWC on convergence rate, resulting in slightly different
scores for the all-EWC and no-reg models.

WMT19 news task: EWC improves performance when tuning on validation sets

An effective way to improve an already strong model is fine-tuning on small datasets that are
known to be very similar to the test data, as discussed in Chapter 4. As shown for News-to-
TED task adaptation in Table 5.3, EWC can give performance gains over simple fine-tuning
when the domains are related. We explore this possibility as part of our submission to the
WMT 2019 News translation task.

We fine-tune strong English-German NMT models on 2008-2016 WMT News task test
sets. Since memory is not a limiting factor and we are most interested in avoiding over-fitting,
we apply EWC regularization to all model parameters. We tune Λ for EWC on newstest-
2017 and use newstest-2018 as a test set. Details of model and data preparation are given
in Stahlberg, Saunders, de Gispert, et al. (2019). To avoid over-fitting, we fine-tune for
1K-2K iterations (determined by tuning set performance), saving checkpoints every 500
iterations. We average checkpoints before validation. The case-sensitive BLEU scores for
English-to-German and German-to-English NMT are given in Table 5.5.

Fine-tuning Checkpoint averaging En-De De-En
None × 46.7 46.5
None X 46.6 46.4
No-reg × 47.1 46.6
No-reg X 47.3 46.8
EWC × 47.1 46.4
EWC X 47.8 46.8

Table 5.5 BLEU on newstest-2018 when fine-tuning large English-German models on past
WMT test sets without regularization and with EWC regularization. EWC is complementary
to checkpoint averaging.
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Averaging the last few unadapted checkpoints from regular training does not improve
performance. Averaging all fine-tuning checkpoints with the final unadapted checkpoint
gives small improvements over no-reg fine-tuning without averaging. The best results come
when combining EWC regularization during training with checkpoint averaging after training.
As in Fig 5.1 we find that checkpoint averaging is complementary to EWC.

5.2.4 Regularized adaptation summary

We report on training techniques that adapt NMT to new domains while preserving per-
formance on the original domain. We demonstrate that EWC effectively regularizes NMT
fine-tuning. We find that EWC outperforms other training regularization schemes reported
for NMT at reducing forgetting and at improving performance on the new domain. We also
find EWC is complementary to checkpoint averaging, which is effectively a post-training,
pre-inference parameter regularization scheme.

5.3 Using context in MRT objectives for robustness

So far, approaches to adaptation in this thesis have used the standard cross-entropy loss
function. In this section we explore variations on Minimum Risk Training (MRT), a discrimi-
native loss function. As reviewed in Sec. 2.3.1, the MRT training objective is of interest to
NMT generally. It is of relevance to this thesis in particular for two main reasons:

1. In the NMT literature, to the best of our knowledge, MRT is exclusively applied to
fine-tune a model that has already converged under a maximum likelihood objective.
MRT therefore fits naturally into an exploration of improvements to NMT models via
fine-tuning and adaptation.

2. There is some indication that MRT may be effective at reducing the effects of exposure
bias (Wang and Sennrich, 2020). As previously discussed in Sec. 4.3.1, exposure bias
can be a particular difficulty where there is a risk of over-fitting a small dataset, which
is often the case for domain adaptation.

MRT as applied in the NMT literature exclusively uses sequence-level objectives as the
cost function (Sec. 2.3.1). A typical sequence objective is based on sentence-level BLEU
(sBLEU, reviewed in Sec 2.4.4). However sBLEU, even if aggregated over sentences, is only
an approximation of the metric actually used for machine translation evaluation, which is
document-level BLEU. Beyond translation, many metrics for natural language tasks do not
have robust sentence-level approximations.
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A logical progression is the extension of sequence-level NMT training objectives to
include context from outside the sentence. However, to the best of our knowledge, no attempt
has previously been made to extend sequence-level neural training objectives to include
document-level reward functions. This is despite document-level BLEU being arguably the
most common NMT metric, and being the function originally optimized by Minimum Error
Rate Training (MERT) for Statistical Machine Translation (SMT) (Och, 2003).

In this section we present a document-level approach to sequence-level objectives which
brings the training objective closer to the actual evaluation metric, using MRT as a represen-
tative example. We refer to our scheme as doc-MRT, by way of contrast with the standard
MRT formulation which uses a sequence-level objective, which we here refer to as seq-MRT.
We demonstrate doc-MRT under document-level BLEU as well as Translation Edit Rate
(TER) (Snover, 2006). We experiment both with pseudo-documents where sentences are
assigned randomly to a mini-batch, and true document context where all sentences in the
batch are from the same document.

We also apply our scheme to supervised Grammatical Error Correction (GEC). Use of
neural models for GEC is increasingly popular (Sakaguchi et al., 2017; Stahlberg, Bryant,
et al., 2019; Xie et al., 2016). We show gains in GEC metrics GLEU (Napoles, Sakaguchi,
Post, et al., 2015) and M2 (Dahlmeier and Ng, 2012).

Finally, we return to the problem of exposure bias when fine-tuning on small, imperfect
biomedical training sets (Sec. 4.3.1). We show that doc-MRT fine-tuning is effective at
improving performance in terms of BLEU score. It also reduces the degenerative effects of
exposure bias without requiring knowledge of specific triggering sentences or tokens, unlike
the data-centric schemes described in the previous chapter.

5.3.1 Document-level MRT

A risk gradient view of sequence-level MRT

Sentence-level MRT for NMT aims to minimize the expected loss on training data with a
loss function between sampled target sentences yyy and corresponding reference sentences yyy∗.
A sequence-level loss function between sample and reference is defined as ∆(yyy,yyy∗), which
may be non-differentiable. For NMT a common cost function is ∆(yyy,yyy∗) = 1 - sBLEU(yyy,yyy∗),
where sBLEU is smoothed by setting initial n-gram counts to 1 (Edunov et al., 2018a).

Consider taking N samples for each of the S sentences in a mini-batch. We write the
cost function between the sth reference in a mini-batch, yyy(s)∗, and its nth sample, yyy(s)n , as
∆(yyy(s)n ,yyy(s)∗).
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The seq-MRT loss function to be minimized is as follows:

R(θ) =
S

∑
s=1

Ey(s)|x(s);θ ,α

[
∆(y(s),y∗(s))

]
=

S

∑
s=1

N

∑
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(5.2)

We can write the gradient of the log Q function with respect to a specific parameter θi:
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Given a sampled space of N sequences, and writing Ey(s)|x(s);θ ,α =Ez(s) and ∆(y(s),y∗(s))=

∆
(s)
n for brevity, we take the partial derivative of the objective R(θ ) with respect to a model

parameter θi:
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Using the gradient of the log Q function from Eq. 5.3:
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The final line of Eq. 5.5 corresponds to Equation 14 from Shen et al. (2016). A variance-
reduced unbiased estimate of the gradient suggested by Shannon (2017) involves averaging
over samples in a way related to the Reinforce algorithm (Williams, 1992). This is done via
a Monte Carlo approximation for (e.g.) the expected cost Ey(s)|x(s);θ ,α [∆
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n ]:
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An estimate of the loss gradient, from Eq. 5.5, is then:
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The risk gradient can be approximated with variance reduction:
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Document-level MRT

By analogy with sequence-level MRT, we can now consider doc-MRT over batches of S
sentence pairs, which we treat as a pseudo-document.

Let X = [x(1), . . . ,x(S)] be the source document, Y = [y(1), . . . ,y(S)] be a document of
candidate translations, and Y ∗ = [y∗(1), . . . ,y∗(S)] be the reference translations. Document-
level metric D(Y,Y ∗), which may be non-differentiable, replaces the sequence-level metric
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∆(y(s),y∗(s)). We define the document-level risk:

R(θ) = EY |X ;θ ,α

[
D(Y,Y ∗)

]
= ∑

Y

P(Y |X ;θ)α

∑Y ′ P(Y ′|X ;θ)α
D(Y,Y ∗)

= ∑
Y

Q(Y |X ;θ ,α)D(Y,Y ∗)

(5.9)

By analogy with the derivation from Eq. 5.2 to Eq. 5.8, making the same Monte Carlo
assumptions, and with N now as the number of sampled documents Y , the loss gradient
becomes:
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∂θi

≈ α
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Y
(D(Y,Y ∗)−D(Y,Y ∗))

∂

∂θi
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If a sample for each sentence y(s) is assigned to sample document Y independently of
samples for the other sentences y(s

′) the document likelihood can be written:

∂

∂θi
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logP(y(s)|x(s);θ) (5.11)

Consequently y(s)n – the nth sample for the sth sentence in each batch-level document –
contributes the following term to the overall gradient:

α

N −1 ∑
Y :y(s)=y(s)n

(D(Y,Y ∗)−D(Y,Y ∗))
∂

∂θi
logP(y(s)n |x(s);θ) (5.12)

In other words the gradient of each sample is weighted by the aggregated document-
level scores for documents in which the sample appears. Compare with Eq. 5.8, assuming
each sample appears in exactly one document. We have shown that under doc-MRT, each
sentence-level sample has the same gradient contribution as for a direct implementation of
sequence-level MRT with sequence-level metric ∆ replaced by document-level metric D
calculated over the appropriate samples. The additional design choices are in determining
how to assign sampled sentences to sampled documents, and in obtaining the D metric over
those documents.
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Mini-batch document sampling

To generate sample documents we first sample sentences. Sentence sampling for NMT
generates new word-level tokens in a left-to-right manner (Shen et al., 2016). In left-to-right
generation each token is sampled from a distribution conditioned on previously sampled
tokens, incidentally reducing the likelihood of exposure bias to gold references which the
model cannot access at inference time (Ranzato et al., 2016). Sampling can be via beam
search, or random sampling from the model distribution given previously sampled tokens.
Beam search produces more likely samples which may be less diverse compared to random
sampling (Edunov et al., 2018a).

Here we only consider sampling during training. While samples can be more easily
generated offline with respect to fixed model parameters, such samples are not representative
of the current model.

With N sample translations for each of the S sentence pairs per batch we can construct NS

possible sample documents as sequences of S sentences. Considering all possible documents
is intractable unless N and S are small. It also carries the risk that a single sentence will
appear in multiple sampled documents, giving it undue weight.

Instead we propose creating N documents by first ordering samples for each sentence
(e.g. by sBLEU), then creating the nth sample document Yn by concatenating the nth sample
from each sentence. This gives a set of N diverse documents sampled from NS possibilities.
We expect the sampled documents to be diverse in contents, since a given sentence will only
ever occur in a single document context, and diverse in score. We refer to this scheme as
ordered document sampling.

Figure 5.2 illustrates document sampling by assigning sentences randomly to documents.
Figure 5.3 shows a scheme where the same sentence samples are sorted for document-MRT
(ordered).

5.3.2 Experimental setup

Data

We report first on English-German NMT. We initialize with a baseline trained on 17.5M
sentence pairs from WMT192 News task datasets (Barrault et al., 2019), on which we learn a
32K-merge joint BPE vocabulary (Sennrich, Haddow, and Birch, 2016d). We validate on
newstest2017, and evaluate on newstest2018.

2Note that this is a different training set than was used to train baselines for the EWC experiments in the
previous section, resulting in different baseline BLEU scores on the same en-de test set.
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Fig. 5.2 Seq-MRT and doc-MRT (random) with S = 2 sentences / mini-batch and N = 3
samples / sentence, with illustrative (not real) scores. The original references are in the left
column. In standard seq-MRT (middle) each sample has its own score (e.g. sBLEU). For
doc-MRT (random) (right), samples are randomly assigned into N-wise ‘documents’, each
with a combined score (e.g. document BLEU – in this example sequence scores are simply
averaged). Document scores are on average less diverse with less distinct scores and a low
likelihood of extreme distributions. However, they are less sensitive to individual samples,
increasing robustness.

Fig. 5.3 The same example as Fig. 5.2, now comparing seq-MRT (middle) and doc-MRT
(ordered) (right). For doc-MRT (ordered), we sort samples for a given sentence by quality
(e.g. using sBLEU) before N-wise assignment into minibatch-level ‘documents’, each with a
combined score. The doc-MRT scores are still less sensitive to individual samples, increasing
robustness. However the ordered assignment enforces a more extreme range of combined
costs, potentially a benefit to discriminative training.
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We fine-tune on old WMT News task test sets (2008-2016) in two settings. With random
batches sentences from different documents are shuffled randomly into mini-batches. In
this case doc-MRT metrics are over pseudo-documents. With document batches each batch
contains only sentences from one document, and doc-MRT uses true document context. We
use the same experimental settings (e.g. batch size, sampling temperatures and Q function
smoothing factors) for both forms of MRT for each experiment.

For Grammatical Error Correction (GEC) we train on sentences from NUCLE (Dahlmeier,
Ng, and Wu, 2013) and Lang-8 Learner English (Mizumoto et al., 2012) with at least one
correction, a total of 660K sentences. We evaluate on the JFLEG (Napoles, Sakaguchi, and
Tetreault, 2017) and CoNLL 2014 (Ng et al., 2014) sets. For GEC experiments we use
random batching only, since the data is not provided with document boundaries.

Finally we tune our systems for the WMT20 biomedical translation task with doc-MRT.
Our experimental setup for this task is as described in Sec. 4.3.2.

Model, training and inference

For all models we use a Transformer model with the ‘base’ Tensor2Tensor parameters. We
apply MRT only during fine-tuning, following previous work (Edunov et al., 2018a; Shen
et al., 2016). In early experiments, we found that training from scratch with discriminative
objectives (sequence- or document-based) is ineffective. We suspect samples produced early
in training are so unlike the references that the model never receives a strong enough signal
for effective training.

We train to validation set BLEU convergence on a single GPU. The batch size for
baselines and MLE is 4K tokens. For MRT, where each sentence in the batch is sampled
N times, we reduce batch size by N to keep computational requirements approximately the
same. We then keep the effective batch size constant by delaying gradient updates by the
same factor (Saunders, Stahlberg, de Gispert, et al., 2018).

We generate sequence samples for MRT by autoregressive sampling with temperature
τ , where τ = 0 would correspond to sampling the most probable target sentence under the
model N times for each source sentence. We select both τ and α , the Q-function smoothing
factor, by grid search over validation results for both seq- and doc-MRT, finding that τ = 0.3
and α = 0.6 give good performance for both schemes.

At inference time we decode using beam size 4 using SGNMT. News task BLEU scores
are for cased, detokenized output, calculated using SacreBLEU. Biomedical test scores are
case-insensitive BLEU for ‘OK’ sentences from the 2020 biomedical translation task test set
as reported by the organizers (Bawden, Di Nunzio, et al., 2020).
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Computation and sample count

Our proposed document-MRT approach is slightly more complex than sequence-MRT
due to the additional score ordering and aggregation steps. In practice we find that this
extra computation relating to the sequence-level scores is negligible when compared to the
computational cost of sentence sampling, required for all forms of MRT.

Our MRT experiments use N = 8 random samples per sentence unless otherwise stated.
In this we choose the highest N we can practically experiment with, since previous work
finds MRT performance increasing steadily with more samples per sentence (Shen et al.,
2016).

That we see improvements with so few samples is in contrast to previous work which
finds BLEU gains only with 20 or more samples per sentence for sequence-MRT (Edunov
et al., 2018a; Shen et al., 2016). However, we find that document-MRT allows improvements
with far fewer samples, perhaps because the aggregation of scores over sentences in a context
increases robustness to variation in individual samples.

Relatedly, we find that add-one BLEU smoothing (Lin and Och, 2004) is required for
sequence-MRT as in Shen et al. (2016). However we find that doc-MRT can achieve good
results without smoothing, perhaps because n-gram precisions are far less likely to be 0 when
calculated over a document. This allows directly optimizing the BLEU metric rather than its
approximation.

5.3.3 Document-level MRT experiments

MRT for NMT

In Table 5.6, we fine-tune an en-de baseline on documents from past News sets. We com-
pare sentence-BLEU and document-BLEU MRT to fine-tuning with Maximum Likelihood
Estimation (MLE).

MLE fine-tuning degrades the baseline. This suggests the baseline is well-converged, as
is desirable for applying MRT (Shen et al., 2016). The degradation is slightly smaller with
batches containing only sentences from the same document. We connect this to the idea that
NMT batches with fewer sentence pairs have ‘noisier’ estimated gradients, harming training
(Saunders, Stahlberg, de Gispert, et al., 2018). We expect batches of sentences from a single
document to be similar and therefore give less noisy gradient estimates.

Both seq-MRT and doc-MRT improve over the baseline with N = 8. We also explore
MRT at N = 4, with batch size adjusted as described in section 5.3.2 for the same effective
batch size per update, and with fewer training steps such that the model ‘sees’ a similar
proportion of the overall dataset. Early experiments selecting sentence samples via beam
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Model Random batches Document batches
Baseline 42.7
MLE 40.0 41.0

N = 4 N = 8 N = 4 N = 8
Seq-MRT 42.6 43.5 42.6 43.5
Doc-MRT (random) 41.7∗ 43.1∗ 43.1 43.0
Doc-MRT (ordered) 43.4 43.7 43.4 43.9

Table 5.6 BLEU on en-de after MLE and MRT under 1−sBLEU (seq-MRT) and 1− BLEU
(doc-MRT). Results indicated by ∗ are mean scores over 3 runs with the same settings, which
had a range of just 0.2 BLEU.

.

Model Random batches Document batches
Baseline 39.2 39.2
MLE 41.2 40.0
Seq-MRT 39.4 40.5
Doc-MRT (ordered) 39.0 38.9

Table 5.7 TER on en-de after MLE and MRT under sentence-TER (seq-MRT) and doc-TER
(doc-MRT). Lower TER is better.

search gave similarly poor results for both seq-MRT and doc-MRT. This may be because
beam search produces insufficiently diverse samples for this task (Freitag and Al-Onaizan,
2017).

Sequence-MRT gives a 0.8 BLEU gain over the baseline with both batching schemes
using N = 8 samples, but starts to degrade relative to the baseline with N = 4 samples. With
document batches and N = 8, doc-MRT (ordered) outperforms seq-MRT by a further 0.4
BLEU. With N = 4 doc-MRT (ordered) still achieves a 0.7 BLEU improvement over the
baseline, or a 0.8 BLEU improvement over seq-MRT. We suggest therefore that doc-MRT
(ordered) may be a computationally more efficient alternative to seq-MRT when large sample
counts are not practical.

For contrast with the ordered document sampling approach of Section 5.3.1, we give
results for doc-MRT (random), which uses randomly sampled contexts. This approach
falls significantly behind doc-MRT (ordered) with either batching scheme. Since doc-MRT
(random) with random batches is exposed to randomness at the batch construction, sentence
sampling and document sampling stages, these results are averages over 3 experimental runs,
which gave fairly consistent results (<0.2 BLEU range across all runs). In general we do
find that results with random batches and random ordering are variable and sensitive to batch
size and batching scheme. However, we also conclude that the success of doc-MRT is not
dependent on the presence of document boundaries in the training data.
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Model JFLEG CONLL2014
P R M2 GLEU P R M2 GLEU

Baseline 67.3 38.2 58.4 50.4 54.4 21.8 41.9 67.3
MLE 64.7 37.7 56.6 50.1 51.4 20.9 39.8 67.1
Seq-MRT 62.7 39.1 56.0 50.0 52.4 24.5 42.7 67.1
Doc-MRT (ordered) 64.4 41.0 57.8 51.4 53.2 24.6 43.2 67.5

Table 5.8 GEC Precision, Recall, M2, and GLEU after MLE and MRT. MRT is under
1−sentence-GLEU for seq-MRT and 1−doc-GLEU for doc-MRT. Both MRT schemes use
random batches and random sentence sampling. Higher scores are better for all metrics.

We interpret these results by considering the effect on the per-sentence cost for the
different schemes. We find MRT works well when sample scores are different enough to
be discriminated, but suffers if scores are too different. This is in line with the findings
of Edunov et al. (2018a) that including the gold reference causes the model to assign low
relative probabilities to every other sample.

Doc-MRT aggregates scores over many samples, while seq-MRT uses individual scores.
We believe this explains the stronger performance of doc-MRT for small values of N,
especially for the ordered document scheme, which ensures scores are still different enough
for MRT to discriminate.

Our approach can also be used with document-level metrics that are not intended to
be used with individual sentences. In Table 5.7 we demonstrate this with TER, which
estimates the edit rate required to correct a set of translation hypotheses. Document-TER
MRT improves very slightly over a strong baseline, although batching scheme has less of an
impact here. Notably seq-level MRT does not improve TER over the baseline, indicating
TER may be too noisy a metric for use at the sentence level.

MRT for GEC

We next compare MRT approaches when tuning GEC systems under the GLEU metric
(Napoles, Sakaguchi, Post, et al., 2015), an n-gram edit measure typically used at the corpus
or document level. Table 5.8 shows that document MRT fine-tuning improves GLEU over
the baseline, MLE fine-tuning, and a sequence-GLEU MRT formulation. Also notable is the
change in M2, which finds the phrase-level edit sequence achieving the highest overlap with
the gold-standard (Dahlmeier and Ng, 2012). MLE and sequence-MRT improve recall at a
detriment to precision, suggesting over-generation of spurious corrections. Document-MRT
likewise improves recall, but with a precision score closer to the baseline for more balanced
performance. There is clear indication of a tension between M2 and GLEU: a small increase
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in GLEU under doc-MRT on CONLL leads to a large increase in M2, while a large increase
in GLEU under doc-MRT on JFLEG leads to a small decrease in M2.

We note that our improvements on JFLEG are similar to the improvements shown by
Sakaguchi et al. (2017) for neural reinforcement learning with a sequence-GLEU cost metric.
However, their results involve N=20 samples and 600k updates, compared to N=8 and 3k
updates with our approach.

WMT20 biomedical task: addressing exposure bias with doc-MRT

In the previous chapter we discussed data-centric approaches to challenges in biomedical
domain translation. In particular, we showed in Sec. 4.3 that fine-tuning generic pre-trained
models on smaller amounts of biomedical-specific data can lead to strong performance very
quickly. However, fine-tuning on small corpora exacerbates the effect of any noisy or poorly
aligned sentence pairs. We treat this as a form of exposure bias, in that model overconfidence
in training data results in poor translation hypotheses at test time, with concrete examples
given in Table 4.7

We propose an approach to this problem in terms of the parameter fine-tuning scheme by
using MRT. Wang and Sennrich (2020) have recently shown MRT as effective for combating
exposure bias in the context of domain shift – test sentences which are very different from
the training data. Our hypothesis in this section is that MRT is also more robust against
over-exposure to misaligned training data.

We use memory-intensive large models for the biomedical task, and N is a limiting factor
for MRT on such models. We have found that doc-MRT is particularly robust to small N,
making this task an appropriate application for doc-MRT over seq-MRT.

The experimental setup, data preparation and MLE fine-tuning process are as described
in Chapter 4. Here we discuss further experiments with MRT fine-tuning. We also discuss
our WMT20 biomedical task test scores, since our submitted systems primarily involved
MRT. For the test sentences, we additionally split any test lines containing multiple sentences
before inference using the Python NLTK package3, translate the split sentences separately,
then remerged. We found this gave noticeable improvements in quality for the few sentences
it applied to. While validation scores, as before, are for case-insensitive detokenized text
obtained using SacreBLEU, test scores are as provided by the organizers for ‘OK’ sentences
using Moses tokenization and the multi-eval tool.

We initialize both from baseline single models and from the baseline fine-tuned on the
adaptation set with MLE. Experimentally, we find initializing fine-tuning from averaged

3https://pypi.org/project/nltk/ sentence splitter

https://pypi.org/project/nltk/
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de2en en2de es2en en2es
1 Baseline 38.8 30.6 48.5 46.6
2 MLE fine-tuning from 1 40.9 32.5 48.5 46.0
3 Fine-tuning from 1, no-title 40.9 32.2 47.0 44.9
4 Seq-MRT from 1 40.2 31.3 49.0 47.2
5 Seq-MRT from 2 41.2 32.7 45.9 43.9
6 Doc-MRT from 1 40.0 31.1 49.0 47.4
7 Doc-MRT from 2 41.3 32.9 45.8 43.3
8 Doc-MRT with no title from 3 (en-de) 1 (en-es) 42.0 32.4 48.5 46.9

Table 5.9 Validation BLEU developing models used in English-German and English-Spanish
language pair submissions. Scores for single checkpoints. MRT fine-tuning from models 2
and 3 for Spanish-English did not improve over the baselines.

de2en en2de es2en en2es
Dev Test Dev Test Dev Test Dev Test

MLE (all data) (en-de) / Baseline (en-es) 41.1 39.6 32.2 32.9 48.5 46.6 47.1 45.7
Doc-MRT (no-title data) 41.9 39.6 32.6 32.8 49.0 46.4 47.2 46.7
Doc-MRT (all data) 41.3 39.8 33.0 33.2 48.9 46.6 47.7 46.6

Table 5.10 Validation and test BLEU for models used in English-German and English-Spanish
language pair submissions. All for averaged checkpoints. Test results are for ‘OK’ sentences
as scored by the organizers.

checkpoints gives about the same or slightly worse results, with the added complexity of
saving and averaging checkpoints.

Table 5.9 gives validation results for models fine-tuned with MRT, with lines 1-3 repro-
duced from Table 4.6. We confirm by comparing line 4 against 5 and line 6 against 7 that
the convergence of the initializing model is very important for MRT. Initializing MRT fine-
tuning with the English-German baseline results in a score 1.3 to 1.8 BLEU points lower than
initializing with the MLE fine-tuned model. We see a similar pattern for English-Spanish,
where the MLE fine-tuned model (line 2) underperforms the baseline (line 1). Consequently
initialising MRT from the MLE tuned model (line 7) performs worse than initialising it
from the baseline (line 6). Interestingly, seq-MRT performs nearly as well as doc-MRT here,
perhaps because the models are larger and more strongly converged on in-domain data.

We submitted three runs to the WMT20 biomedical task for each language pair. All
submissions used checkpoint averaging which we found generally improved or at least did not
hurt performance. For en-de run 1 was the baseline model fine-tuned on MLE with all data,
while for en-es we submitted the (also checkpoint averaged) baseline as MLE fine-tuning did
not improve dev set performance. Run 2 was the run 1 model fine-tuned with doc-MRT on
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System German hypothesis Approximate English translation
English source [Associations of work-related strain with subjective sleep quality and individual

daytime sleepiness].
Human transla-
tion

[Zusammenhang von arbeitsbezogenen psychischen Beanspruchungsfolgen mit
subjektiver Schlafqualität und individueller Tagesschläfrigkeit.]

Baseline [Assoziationen arbeitsbedingter Belastung
mit subjektiver Schlafqualität und individu-
eller Tagesschläfrigkeit].

[Associations of work-related stress
with subjective sleep quality and indi-
vidual daytime sleepiness.]

Fine-tuning Zusammenfassung. Summary
Doc-MRT [Assoziationen arbeitsbedingter Belastung

mit subjektiver Schlafqualität und individu-
eller Tagesschläfrigkeit].

[Associations of work-related stress
with subjective sleep quality and indi-
vidual daytime sleepiness].

English source [Effectiveness of upper body compression garments under competitive condi-
tions: a randomized crossover study with elite canoeists with an additional case
study].

Human transla-
tion

[Effektivität von Oberkörperkompressionsbekleidung unter Wettkampfbedin-
gungen: eine randomisierte Crossover-Studie an Elite-Kanusportlern mit einer
zusätzlichen Einzelfallanalyse.]

Baseline [Wirksamkeit von
Oberkörperkompressionsbekleidungsstücken
unter kompetitiven Bedingungen: Eine
randomisierte Crossover-Studie mit Elite-
Kanuten mit einer Additionsstudie].

Effectiveness of upper body compres-
sion garments under competitive con-
ditions: a randomized crossover study
with elite canoeists with an addition
study.

Fine-tuning Eine randomisierte Crossover-Studie mit
Elite-Kanuten mit einer Additional Case
Study wurde durchgeführt.

A randomized crossover study with elite
canoeists with an additional case study
was carried out.

Doc-MRT Eine randomisierte Crossover-Studie
mit Elite-Kanüsten mit einer Additional
Case Study hat zur Wirksamkeit von
Oberkörperkompressionsbekleidung unter
kompetitiven Bedingungen geführt.

A randomized crossover study with elite
canoes with an additional case study
showed the effectiveness of upper body
compression garments under competi-
tive conditions.

Table 5.11 Two sentences from the English-German 2020 test set with hypothesis translations
from various models (title casing removed for clarity). Examples demonstrate the effects
of exposure bias from fine-tuning on imperfectly aligned training sentences, compared to
continued fine-tuning with MRT. Notable hypothesis departures from the reference are
emphasized.
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no-title data. Run 3 was the run 1 model fine-tuned with doc-MRT on all Medline abstract
data. Table 5.10 gives scores for these submitted models.

Our best runs achieve the best and second-best BLEU-scored results among all systems
for en2es and es2en respectively as reported by the organizers. For en-de our test scores are
further behind other systems, perhaps indicating that the baseline system could have been
stronger before fine-grained adaptation. This is also indicated by the strong improvement of
these models under simple MLE.

We submitted the doc-MRT model on no-title data instead of the MLE on no-title data
because MLE optimization did not improve over the baseline for en-es or en-es, with or
without title lines, whereas MRT fine-tuning did. We also wanted to further examine whether
doc-MRT was robust enough to benefit from ‘noisy’ data like the title lines, or whether
cleaner no-title training data was more useful. In fact both forms of doc-MRT performed
similarly on the test data, except in the case of en2de, where ‘no-title’ MRT scored 0.4 BLEU
worse – further confirmation that source sentences with more information than the gold target
can benefit MRT. We note that a MRT run was the best run or tied best run in all cases.

For the test runs, we additionally experimented with simply removing square bracket
tokens from source sentences, since these could act as ‘triggering’ tokens for title sentences.
This did seem to improve translations where applicable, as in the Table 4.7 examples.
However, it is clearly not applicable to all forms of exposure bias, since it requires knowledge
of all behaviours that could trigger exposure bias. MRT does not require such knowledge,
but still reduces the effects of exposure bias (Table 5.11).

5.3.4 Document-level MRT summary

We present a novel approach for structured loss training with document-level objective
functions. Our approach relies on a procedure for sampling a set of diverse batch-level
contexts using N-wise sample ordering. As well as randomly selecting training data, we
assess training with mini-batches consisting only of single document contexts. While the
scope of this work does not extend to sampling sentences given document context, this would
be an interesting direction for future work.

We demonstrate improvements covering three document-level evaluation metrics: BLEU
and TER for NMT and GLEU for GEC. We also find that Minimum Risk Training can
benefit from imperfectly aligned training examples while reducing the effects of exposure
bias. We finish by noting that the original MERT procedure developed for SMT optimized
document-level BLEU and with our procedure we reintroduce this to NMT.
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5.4 Conclusions

This chapter presents approaches to changing NMT model behaviour by varying the adapta-
tion procedure. The data-centric approaches to NMT domain adaptation discussed in Chapter
4 can lead to performance degradation on previously learned domains due to forgetting, or
on a new domain due to exposure bias.

We address the forgetting problem by applying EWC regularization during NMT adap-
tation. We do so while adapting to a single new domain, and while adapting to two new
domains sequentially. We show that EWC reduces forgetting. As well, depending on the
relationship between pre-training and new domains, EWC can lead to stronger performance
on either new or original domain than tuning without regularization.

Separately, we develop a fine-tuning scheme based on MRT that takes into account the
use of corpus-level metrics in NMT, as well as other tasks. We find that our doc-MRT
scheme gives stronger results than standard seq-MRT with small sample count, making it
more efficient to use for large models. We also find that our scheme mitigates previously
described problems of exposure bias in the biomedical translation task.

Regularized adaptation allows strong performance by a single translation model over
multiple domains of interest. However, we note that some trade-off is still likely between
improved performance on the new domain and forgetting on previously-learned domains. In
the next chapter, we will explore effective use of multiple single-domain or multi-domain
models to translate multiple domains of interest by adjusting the inference procedure.



Chapter 6

Inference schemes to combine benefits of
adapted NMT models

This chapter draws from the following publications: Saunders, Stahlberg, de Gispert, et al.
(2019) throughout and Saunders, Stahlberg, and Byrne (2019) in Sec. 6.3

6.1 Motivation

The previous chapters have shown that it is possible, with careful data selection or adaptation
schemes, to produce strong domain-specific translation models. These models may be adapted
to extremely narrow domains, for example by fine-tuning on a small or otherwise easily-
fitted dataset. Narrow domain models, as in the biomedical task experiments, may however
give poor translations for sentences from other domains. Alternatively models may be
adapted to translate multiple domains, for example using regularized adaptation techniques.
Models adapted to give good performance over multiple domains, as in regularization
experiments, usually show some level of trade-off between new-domain and pre-training
domain performance.

If the goal is optimal translation in all scenarios, it may be beneficial to use ensembles of
separate models at inference time (Sec. 2.4.3). In this chapter we explore inference schemes
to combine benefits of adapted domain-specific NMT models.

Translating with an ensemble of models is slower and involves more memory to store or
run than using a single NMT model. However, ensembles of NMT models typically perform
better: the best achieving systems in translation evaluation campaigns are consistently
ensembles (Barrault et al., 2019). Moreover an ensemble of models trained on multiple
domains may achieve good performance over all domains, as we showed in Sec. 4.2.
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As reviewed in Sec. 3.5.1, model ensembling has previously been applied to domain
adaptation scenarios. A typical example is the approach of Freitag and Al-Onaizan (2016),
who use an ensemble of an in-domain and out-of-domain model to translate all sentences.
However, prior work on this problem makes the implicit assumption that a good ensemble
weighting can be pre-determined for all test sentences, before any test sentences are available.
We aim to address that assumption in this chapter, as well as our third research question
on domain-specific NMT in scenarios where the exact domain of a test sentence is not
pre-determined.

In Sec. 6.2 we compare typical ‘static’ approaches to multi-domain ensemble weighting
with our own language modelling approach to conditioning ensemble weights on the source
sentence, allowing per-sentence ensemble weighting. In Sec. 6.3 we develop adaptive
ensemble weighting for NMT, in which the contribution of different ensemble models can
vary while translating a single sentence as well as between sentences.

6.2 Language-model interpolated ensembles

In this section we focus on the potential benefits of performing inference with a weighted
ensemble of models trained on different domains. An appropriate ensemble weighting will
depend on the test domain. In reality any test sentence may be drawn from some unknown
domain, in which case a good weighting may not be obvious. Crucially, we assume the
realistic scenario where the domain is unknown at inference time. In particular, we address
the assumption that a fixed ensemble weighting should be determined according to the broad
labels applied externally to a test set.

A related approach is described by Sajjad et al. (2017), who perform translation with
a weighted multi-domain ensemble, where weights ‘can be pre-defined or learned on a
development set’. However, we make an important distinction between the domain of the
training data and model – typically known, often with an available development set – and
the test data, for which we cannot assume we know the domain or have access to some
convenient set of relevant data.

6.2.1 Static decoder configurations for ensemble weighting

We assume we have models 1, ...,K such that each perform well on at least one domain, and
that we have both training and development datasets for those K domains/models. We wish
to weight each model’s predictions by some static value Wk for each test sentence at inference
time.
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There are a number of existing approaches to this problem. One is the ‘oracle’ scenario,
in which 1) the provenance of the test sentence is known and 2) the appropriate model to
translate a sentence of that provenance is known. This the approach taken when, for example,
we decide translate the IT test set with the best IT model in Sec. 5.2. This may be practical
in limited scenarios such as translation shared tasks where the training and test domains are
provided, but is not applicable in general.

Other approaches include simply taking a uniform ensemble of all models regardless of
sentence (Freitag and Al-Onaizan, 2016) or tuning ensemble weights on a development set
(Sajjad et al., 2017). The former approach is simple, but does not guarantee good performance
on any particular domain. The latter approach can be targeted to a particular domain, but
weight tuning can be very slow, and the approach requires either that the domain of the test
set is known or that a development set representative of the test set is available.

Instead we propose a simple source-sentence conditioning approach, which we refer to
as ensembling with an Informative Source (IS). We train language models on source training
sentences from each domain k. We then obtain weights Wk which are static during inference,
but which are defined separately for each test source sentence x :

Wk(x) =
PLMk(x)

∑k′ PLMk′ (x)
(6.1)

6.2.2 Experimental setup

Throughout this chapter we report on Spanish-to-English (es-en) and English-to-German
(en-de) translation, using the same experimental setup, data and models as described in Sec.
5.2.2. The language models Wk used for IS scoring are 4-gram language models trained on
the source training data for each model domain k. Each language model is estimated with
modified Kneser-Ney smoothing (Heafield et al., 2013) and without n-gram pruning using
the KenLM toolkit (Heafield, 2011).

6.2.3 Informative source ensemble weighting experiments

Per-sentence source conditioning is more effective than tuning for less computation

We first demonstrate the power of our IS approach by comparing to weight tuning on
validation sets for the Scielo Health/Bio domain task in Table 6.1. The results demonstrate
that the optimal ensemble weighting for a set of domains is not necessarily intuitive. For the
Health domain, the oracle choice – translating all Health test sentences with the corresponding
model only – gives the best result. However, for the Bio domain the oracle choice performs
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comparatively poorly. Instead, placing about a third of the ensemble weighting onto the
Health model results in an additional 1 BLEU on the Bio dev set. IS weighting matches or
exceeds the best tuned score in each case.

With the combined BLEU column we simulate the realistic scenario where domain labels
for some mixed-domain test set are not available. In this case, uniform ensembling is a
reasonable approach, outperforming either oracle model overall. However, IS weighting still
outperforms the best tuned ensemble by 0.8 BLEU.

IS often selects one ‘correct’ model, but not necessarily the oracle

Analysis of the scores suggests that many of Health and Bio domain validation sentences are
best translated by only one of the models – about 80% of the weights determined by IS are
0.99 or higher for one domain. This information allows a potentially significant inference
speed improvement, since these sentences can simply be translated by a single model instead
of by ensemble decoding with no performance loss. As well, we note that extremely high
weights do not necessarily correspond to the domain label. Of the Health set 3% of sentences
will be translated by the Bio model alone under IS, and 38% of the Bio validation set will be
translated by the Health model alone under IS. The strong results under IS therefore support
our hypothesis that provenance should not be relied upon as a surrogate for test sentence
domain.

WHealth WBio Health dev BLEU Bio dev BLEU Combined dev BLEU
IS 37.2 40.0 38.7
0.0 1.0 (Bio model only) 31.7 38.7 35.5
0.1 0.9 32.4 39.3 36.2
0.2 0.8 33.2 39.7 36.7
0.3 0.7 33.8 39.7 37.0
0.4 0.6 34.5 39.7 37.4
0.5 0.5 (Uniform ensemble) 35.2 39.6 37.8
0.6 0.4 35.9 39.5 37.9
0.7 0.3 36.3 39.1 37.9
0.8 0.2 36.7 38.8 37.9
0.9 0.1 37.1 37.9 37.6
1.0 0 (Health model only) 37.2 37.7 37.5

Table 6.1 Validation BLEU for statically interpolated ensembles between the Scielo es-en
Health and Bio models, compared to per-sentence IS weighting.

We note that a significant proportion of the weights do involve meaningful contributions
from more than one ensemble model. Table 6.2 gives sentences and weights for sentences
from a biomedical dev set for English-to-German translation models trained on News and
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Biomedical data, two more distant domains. The non-oracle weightings in these cases have
intuitive interpretations: all three sentences are from the biomedical domain, but the first
could also be interpreted as a sentence from a dialog or Q&A domain, the second from a
software or IT domain, the third from an interview or diary domain.

We also emphasize that the validation set cannot always be taken as representative of
the test set. The IS weightings for the Health test set mark 79% of sentences for oracle
translation and 5% for Bio-only translation, quite similar to the dev set proportions of 82:3
for oracle:other. However, 58% of the Bio test set is marked for oracle translation and 14%
for Health-only translation, a significant shift from the 43:38 dev set proportions.

Source sentence WBio WNews
Where can I find information about diagnosis or management of Gaucher’s disease? 0.64 0.36
The data will then be entered into a database and analyzed. 0.56 0.44
I have to check my blood sugars more frequently when I’m playing sport. 0.14 0.86

Table 6.2 Ensemble model weights under the IS scheme for the English-to-German Biomedi-
cal and News NMT models. All source sentences are from Khresmoi medical article summary
set (Dušek et al., 2017)

Decoder scheme es-en en-de
Health Bio News TED IT

Oracle model 35.9 36.1 37.8 24.1 39.6
Uniform 33.1 36.4 21.9 18.4 38.9
IS 36.0 36.8 37.5 25.6 43.3

Table 6.3 Test BLEU for 2-model es-en and 3-model en-de ensembles of single-domain
(unadapted) models from Sec. 5.2.2, compared to results with the oracle model chosen to
correspond to the test domain. Uniform ensembling generally underperforms the oracle,
while IS can significantly outperform the oracle.

Table 6.3 contains test BLEU for two- and three-model ensembling (models 1+2 from
Table 5.2 and 1+2+3 from Table 5.3). We find that IS significantly outperforms uniform
ensembling. IS also outperforms the oracle in all cases except en-de News, indicating this
scheme does not simply select a single model for each test set.

6.2.4 Ensembling with static interpolation: summary

In this section we report on weighting mixed-domain ensembles for multi-domain NMT
inference. We determine static ensemble weights for each test sentence at inference time using
n-gram language model scores. Our approach significantly out-performs uniform ensembling,
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and often outperforms the ‘oracle’ model trained on data with the same provenance as the
test sentence. Moreover, our approach does not require knowledge of test set provenance or
validation data availability.

6.3 Bayesian Interpolation for adaptive ensembles

In this section we continue the chapter’s theme of adaptive inference by exploring non-static
weighting for multi-domain ensembles. The previous section handled cases where the domain
of a given test sentence is unknown, even if the test set has a domain label. In this section we
further allow the domain weighting for a given test sentence to vary within that sentence.

We develop an adaptive inference scheme for NMT ensembles by extending Bayesian
Interpolation (BI) (Allauzen and Riley (2011), reviewed in Sec. 3.5.1) to sequence-to-
sequence models.1 This lets us calculate ensemble weights adaptively over time without
needing the domain label, giving strong improvements over uniform ensembling for baseline
and fine-tuned models. We show that our approach is complementary to the static decoder
configurations described in the previous section, as well as the regularized training techniques
described in the previous chapter.

6.3.1 Adaptive decoding

We extend the BI formalism to condition on a source sequence, letting us apply it to adaptive
NMT ensemble weighting. The derivation below broadly follows that in Sec. 3.5.1, but we
introduce dependence on source sentence x and discuss the resulting modelling choices.

We consider models pk(y|x) trained on K distinct domains, used for tasks t = 1, . . . ,T . In
this case we say that a task is decoding from one domain, so T = K. We assume throughout
that p(t) = 1

T , i.e. that tasks are equally likely absent any other information. A standard,
fixed-weight ensemble would translate with:

argmax
y

p(y|x) = argmax
y

K

∑
k=1

Wk pk(y|x) (6.2)

The BI formalism assumes that we have tuned sets of ensemble weights λk,t for each task.
We can define a task-conditional ensemble:

p(y|x, t) =
K

∑
k=1

λk,t pk(y|x) (6.3)

1See bayesian combination schemes at https://github.com/ucam-smt/sgnmt

https://github.com/ucam-smt/sgnmt


6.3 Bayesian Interpolation for adaptive ensembles 99

which can be used as a fixed weight ensemble if the task is known. However if the task t is
not known, we wish to translate with:

argmax
y

p(y|x) = argmax
y

T

∑
t=1

p(t,y|x) (6.4)

At decoder step i, where hi is the history y1:i−1, we generate the ith token in the translation
hypothesis:

p(yi|hi,x) =
T

∑
t=1

p(t,yi|hi,x)

=
T

∑
t=1

p(t|hi,x) p(yi|hi, t,x) (6.5)

We now introduce the expression for the task-conditional output (Eq 6.3) and marginalize
over tasks t to find adaptive weights Wk,i:

p(yi|hi,x) =
T

∑
t=1

p(t|hi,x)
K

∑
k=1

λk,t pk(yi|hi,x)

=
K

∑
k=1

pk(yi|hi,x)
T

∑
t=1

p(t|hi,x)λk,t

=
K

∑
k=1

Wk,i pk(yi|hi,x) (6.6)

The final line of Eq. 6.6, by comparison with Eq. 6.2, has the form of an adaptively weighted
ensemble where:

Wk,i =
T

∑
t=1

p(t|hi,x)λk,t (6.7)

In decoding, ensemble weight adaptation at each step i relies on a recomputed estimate of
the task posterior, where p(hi|t,x) is simply equivalent to the task-conditional probability of
the previous output token p(yi−1|t,x):

p(t|hi,x) =
p(hi|t,x)p(t|x)

∑
T
t ′=1 p(hi|t ′,x)p(t ′|x)

(6.8)

Static decoder configurations

In static decoding (Eq. 6.2), the weights Wk are constant for each source sentence x. These
static weights can be obtained under the BI formalism given certain assumptions. The BI
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ensemble weights are determined by p(t|x), the probability of the task conditioned only on
the source sentence, and by ensemble weights λk,t , which determine the contribution from
domain k model to inference for task t.

Consider λk,t = p(t|x) = 1
T : the task distribution is not affected by the source sentence,

and all model domains contribute equally to all possible tasks. From Eq. 6.7 the ensemble
weight for model k at decoder step i becomes Wk,i = ∑

T
t=1

1
T

1
T = 1

T = 1
K where T = K. In

other words, these assumptions lead to a fixed equal-weight interpolation of the component
models: uniform ensembling.

Less general assumptions lead to static decoding with task posteriors conditioned only on
the source sentence, as we discussed in the previous section. In the context of BI this reflects
an assumption that the inference history can be disregarded and that p(t|hi,x) = p(t|x). In
the most straightforward case, we assume that only domain k is useful for task t: λk,t = δk(t)
(1 for k = t, 0 otherwise). This simplifies to a fixed ensemble:

Wk = p(k|x) (6.9)

and decoding proceeds according to Eq. 6.7. This is the informative source (IS) scenario
described in the previous section. As before we use source language n-gram language models
to estimate p(t = k|x) in Eq. 6.9.

Adaptive decoder configurations

For adaptive decoding with Bayesian Interpolation, as in Eq. 6.6, the model weights vary
during decoding according to Eq. 6.7 and Eq. 6.8, assuming that p(t|x) = p(t) = 1

T . This
corresponds to the approach in Allauzen and Riley (2011), which considers only language
model combination for speech recognition. We refer to this in experiments simply as BI.

A refinement if T = K is to incorporate Eq. 6.1 into Eq. 6.8, for p(t|x) = p(t = k|x) =Wk

as defined under the IS formulation. We refer to this as Bayesian Interpolation with an
informative source (BI+IS).

We now address the choice of λk,t . A simple but restrictive approach is to take λk,t = δk(t).
We refer to this as identity-BI, and it embodies the assumption that only one domain is useful
for each task. Unlike IS, which has the same λ , updating p(t|hi,x) means that weights are
still adaptive during decoding. We also note that unlike the oracle inference case, we do not
need to specify the task/domain corresponding to each test sentence.

Alternatively, if we have validation data Vt for each task t, parameter search can be done
to optimize λk,t for BLEU over Vt for each task. This is straightforward but relatively costly.
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Decoder p(t|x) λk,t

Static
Uniform

1
T

1
T

IS
PLMk(x)

∑k′ PLMk′ (x)
δk(t)

Adaptive

Identity-BI
1
T

δk(t)

BI
1
T

PLMk,t

∑k′ PLMk′,t

BI+IS
PLMk(x)

∑k′ PLMk′ (x)
PLMk,t

∑k′ PLMk′,t

Table 6.4 Setting task posterior p(t|x) and domain-task weight λk,t for T tasks under decoding
schemes in this work. Note that IS can be combined with either Identity-BI or BI by simply
adjusting p(t|hi,x) according to Eq. 6.8. PLMk,t is as defined in Eq. 6.10.

We propose a simpler approach based on the source language n-gram language models
from Eq. 6.1. We assume that each Gt is also a language model for its corresponding domain
k. With PLMk,t = ∑x∈Vt PLMk(x), we take:

λk,t =
PLMk,t

∑k′ PLMk′,t

(6.10)

λk,t can be interpreted as the probability that task t contains source sentences x drawn from
domain k as estimated over the set of sentences Vt . We note that unlike optimizing λk,t for
BLEU over a validation set, this approach does not require access to reference sentences. Vt

could in principle be the test set or test document rather than some additional validation set.
Figure 6.1 demonstrates this scheme when weighting a biomedical and a general (news)

domain model to produce biomedical sentences under BI. In the first example the model
weights Wk,i are even until biomedical-specific vocabulary is produced, at which point the in-
domain model dominates. The other examples contain less ‘biomedical-specific’ terminology
and so the adaptive weights stay approximately even during decoding. We note that the
adaptive weights reflect the overall language model weights found using IS in Table 6.2.

Summary

We summarize our approaches to decoding in Table 6.4.
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Fig. 6.1 Adaptively adjusting ensemble model weights Wk,i (Eq. 6.7) during decoding with
Bayesian Interpolation for German-to-English Khresmoi sentences.
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Experimental setup

We primarily use the same experimental setup as in the previous section. Models that have
been tuned with domain adaptation techniques are from Sec. 5.2. For the experiments relating
to the biomedical translation task we use the same experimental setup, data and models as in
Sec. 4.2.2.

As in the previous section we use language models trained on the source training data
for each domain using the KenLM toolkit (Heafield, 2011). We use 4-gram models for all
cases except for the biomedical task, where we use 2-gram models. This is because there
was a high likelihood of the test data having little topic overlap with any training data, so we
wished to avoid unduly weighting sparse higher-order n-grams across the similar domains.

6.3.2 Adaptive decoding experiments

History conditioning with BI is complementary to source conditioning with IS

Table 6.5 gives results using our adaptive decoding schemes with ensembles of unadapted
models trained only on one domain, as in the previous section. We again compare with the
‘oracle’ model trained on each domain, which we can only use if we know the test domain.
We also compare to results with uniform ensembling and IS alone.

Identity-BI strongly improves over uniform ensembling, especially on the general do-
mains. BI with λ as in Eq. 6.10 improves further for all test sets except es-en Bio. BI
individually matches or outperforms the oracle in all cases, indicating that, like IS, the BI
scheme does not simply select a single model. BI generally performs about the same or
slightly better than IS.

The combined scheme of BI+IS outperforms either BI or IS individually, except for en-de
IT. We speculate IT is a distinct enough domain that p(t|x) has little effect on adapted BI
weights.

Bayian Interpolation improves over static ensembles of EWC-adapted models

In Table 6.6 we apply the best adaptive decoding scheme, BI+IS, to models fine-tuned with
EWC. The es-en ensemble consists of models 1+6 from Table 5.2 and the en-de ensemble
models 1+7+10 from Table 5.3. As described in Section 5.2.2, EWC models perform well
over multiple domains, so the improvement over uniform ensembling is less striking than for
unadapted models. Nevertheless adaptive decoding improves over both uniform ensembling
and the oracle model in most cases.
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Decoder configuration es-en en-de
Health Bio News TED IT

Oracle model 35.9 36.1 37.8 24.1 39.6
Uniform 33.1 36.4 21.9 18.4 38.9
Identity-BI 35.0 36.6 32.7 25.3 42.6
BI 35.9 36.5 38.0 26.1 44.7
IS 36.0 36.8 37.5 25.6 43.3
BI + IS 36.0 36.9 38.4 26.4 44.7

Table 6.5 Test BLEU for 2-component es-en ensembles and 3-component en-de ensembles,
compared to oracle model chosen if test domain is known. All models are trained on a single
domain, without fine-tuning. BI and IS are complementary ensemble weighting schemes.

Decoder configuration es-en en-de
Health Bio News TED IT

Oracle model 35.9 37.8 37.8 27.0 57.0
Uniform 36.0 36.4 38.9 26.0 43.5
BI + IS 36.2 38.0 38.7 26.1 56.4

Table 6.6 Test BLEU for 2-model es-en and 3-model en-de model ensembling for models
adapted with EWC, compared to oracle model last trained on each domain, chosen if test
domain is known. Best results without oracle information in bold. BI+IS outperforms
uniform ensembling and in some cases outperforms the oracle.

Decoder configuration
Language pair Model type Oracle model Uniform BI + IS

es-en
Unadapted 36.4 34.7 36.6
No-reg 36.6 34.8 -
EWC 37.0 36.3 37.2

en-de
Unadapted 36.4 26.8 38.8
No-reg 41.7 31.8 -
EWC 42.1 38.6 42.0

Table 6.7 Total BLEU for test data concatenated across domains. Results from 2-model es-en
and 3-model en-de ensembles, compared to oracle model chosen if test domain is known.
Best results without oracle information in bold. No-reg uniform corresponds to the approach
of Freitag and Al-Onaizan (2016). BI+IS performs similarly to strong oracles with no test
domain labeling.

With adaptive decoding, we do not need to assume whether a uniform ensemble or a
single model might perform better for some potentially unknown domain. We highlight this
in Table 6.7 by reporting results with the ensembles of Tables 6.5 and 6.6 over concatenated
test sets, to mimic the realistic scenario of unlabelled test data. We additionally include the
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uniform no-reg ensembling approach given in Freitag and Al-Onaizan (2016) using models
1+4 from Table 5.2 and 1+5+8 from Table 5.3.

Uniform no-reg ensembling outperforms unadapted uniform ensembling, since fine-
tuning gives better in-domain performance. EWC achieves similar or better in-domain results
to no-reg while reducing forgetting, resulting in better uniform ensemble performance than
no-reg.

BI+IS decoding with single-domain trained models achieves gains over both the simple
uniform approach and over oracle single-domain models. BI+IS with EWC-adapted models
gives a 0.9 / 3.4 BLEU gain over the strong uniform EWC ensemble, and a 2.4 / 10.2 overall
BLEU gain over the approach described in Freitag and Al-Onaizan (2016).

Adaptive inference at the WMT19 Biomedical translation task

As described in Chapter 4 we initially approached the 2019 WMT Biomedical translation
task using transfer learning to obtain a series of strong NMT models on distinct domains. We
then combined those models into multi-domain ensembles. Here we further experiment with
an adaptive language-model ensemble weighting scheme. Our final submission achieved the
best submitted test BLEU scores on both directions of English-Spanish translation.

The domain of individual documents in the 2019 Medline test dataset is unknown, and
may vary sentence-to-sentence. While we have seen that uniformly-weighted ensembles
of models from different domains can give good results in this case, we suggest a better
approach would take into account the likely domain, or domains, of each test sentence. We
therefore investigate applying Bayesian Interpolation for language-model based multi-domain
ensemble weighting.

In this case we use a power smoothing scheme, since the tuned model domains are very
similar and we do not wish to over-weight a particular domain.

Wk(x) =
PLMk(x)

α

∑k′ PLMk′ (x)
α

(6.11)

Here α is a smoothing parameter. Uniform ensembling corresponds to α = 0.0 and un-
smoothed IS corresponds to α = 1.0.

For validation results we report cased BLEU scores with SacreBLEU (Post, 2018); test
results use case-insensitive BLEU.

We submitted three runs to the WMT19 biomedical task for each language pair: the
best single all-biomed model, a uniform ensemble of models on two en-de and three es-en
domains, and an ensemble with Bayesian Interpolation. Tables 6.8 and 6.9 give validation
and test scores.
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es2en en2es
Khresmoi Health Bio Test Khresmoi Health Bio Test

1: Health → All-biomed 52.1 36.7 37.0 42.4 44.2 35.0 39.0 44.9
1 → Health 51.1 37.0 37.2 - 44.0 36.3 39.5 -
1 → Bio 50.6 36.0 38.0 - 45.2 35.3 41.3 -
Uniform ensemble 52.2 36.9 37.9 43.0 45.1 35.6 40.2 45.4
BI ensemble (α=0.5) 52.1 37.0 38.1 42.9 44.5 35.7 41.2 45.6

Table 6.8 Validation and test BLEU for models involved in English-Spanish language pair
submissions.

de2en en2de
Khresmoi Cochrane Test Khresmoi Cochrane Test

News 43.8 46.8 - 30.4 40.7 -
News → All-biomed 44.5 47.6 27.4 31.1 39.5 26.5
Uniform ensemble 45.3 48.4 28.6 32.6 42.9 27.2
BI ensemble (α=0.5) 45.4 48.8 28.5 32.4 43.1 26.4

Table 6.9 Validation and test BLEU for models used in English-German language pair
submissions.

We find that a uniform multi-domain ensemble performs well, giving 0.5-1.2 BLEU
improvement on the test set over strong single models. We see small gains from using BI
with ensembles on most validation sets, but only on en2es test.

Following test result release, we noted that, in general, we could predict BI (α = 0.5)
performance by comparing the uniform ensemble with the oracle model performing best
on each validation domain. For en2es uniform ensembling underperforms the Health and
Bio oracle models on their validation sets, and the uniform ensemble slightly underperforms
BI on the test data. For en2de, by contrast, uniform ensembling is consistently better than
oracles on the dev sets, and outperforms BI on the test data. For de2en and es2en, uniform
ensembling performs similarly to the oracles, and performs similarly to BI.

es2en en2es de2en en2de
Uniform 43.2 45.3 28.3 25.9

BI (α=0.5) 43.0 45.5 28.2 25.2
BI (α=0.1) 43.2 45.5 28.5 26.0

Table 6.10 Comparing uniform ensembles and BI with varying smoothing factor on the
WMT19 test data. Small deviations from official test scores on submitted runs are due to
tokenization differences. α = 0.5 was chosen for submission based on results on available
development data.
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From this, we hypothesize that BI (α = 0.5) has a tendency to converge to a single model.
This is effective when single models perform well (en2es) but ineffective if the uniform
ensemble is predictably better than any single model (en2de). Consequently in Table 6.10
we experiment with BI (α = 0.1). In this case BI matches or out-performs the uniform
ensemble. Notably, for en2es, where BI (α = 0.5) performed well, taking α = 0.1 does not
harm performance.

6.3.3 Adaptive ensembling summary

In this section we report on domain adaptive inference where sentence weights can vary
during inference on a single sentence. We compare various schemes to determine adaptive
inference hyperparameters, and find that a language model weighting out-performs an
‘identity’ assumption that a single model performs best on a given domain. Once again, our
adaptive inference approaches significantly out-perform uniform ensembling and ‘oracle’
single-domain models. Our approach also matches oracle performance when ensembling
models tuned for multi-domain performance using EWC.

6.4 Conclusions

This chapter presents our adaptive inference procedure for multi-domain ensembles. Data-
centric and adaptation-centric approaches discussed in Chapters 4 and 5 either assume
foreknowledge of the test domain, or involve some trade-off in performance over multiple
possible test domains. Instead we report on decoding techniques that adapt NMT to new
domains while preserving performance on the original domain.

We first explore static interpolation with simple language model weighting conditioned
on source test sentences. This involves less computation than tuning ensemble weights on
validation set via grid search, and is more effective. It also does not assume the availability
of a validation set.

We then extend Bayesian Interpolation with source information and apply it to NMT
decoding with unadapted and fine-tuned models, adaptively weighting ensembles to out-
perform the oracle case, without relying on test domain labels. We suggest our approach,
reported for domain adaptation, is broadly useful for NMT ensembling.

This chapter concludes the portion of this thesis exploring new approaches to NMT
model fine-tuning and domain adaptation generally. The remaining chapters of original
work apply domain adaptation techniques to problems not typically treated as related to
domain-adaptation.





Chapter 7

Case study: Different sentence
representations in NMT as
complementary domains

This chapter draws from the following publications: Saunders, Feely, et al. (2020) in Sec.
7.2 and Saunders, Stahlberg, de Gispert, et al. (2018) in Sec. 7.3. Some work in Sec. 7.2 on
proprietary data was performed during a research placement at SDL plc.

7.1 Motivation

In the preceding three chapters, we have developed effective measures for adapting NMT
models to new domains, with a focus on good performance over multiple distinct domains.
The approaches can be broadly split into techniques that vary the adaptation data, the
adaptation procedure, or the inference procedure.

In this chapter we move away from strict notions of changing ‘domain’, instead presenting
a case study on varying data representation (reviewed Sec. 2.1). We explore approaches
that represent the same sentences in different ways, such as varying levels of subword or
sub-character segmentation (Sec. 2.1.2) or added syntactic annotation (Sec. 2.1.3). In the
thesis so far we have found that sets of models translating different domains have benefited
from careful consideration of data selection, training and inference. In this chapter we
address our fourth research question by showing that sets of models using different data
representations can benefit from similar considerations.

In Sec. 7.2, we explore the impact of different representations choices at training and
inference time for linguistically distant language pairs, focusing on sub-character representa-



110 Case study: Different sentence representations in NMT as complementary domains

tions for logographic source sentences. We show that simply changing a model’s source data
representation can lead to improvements in translation adequacy.

In Sec. 7.3, we address the assumption that all models in an inference-time ensemble
must share a target language representation. Specifically we extend the idea of using target
language syntactic annotations for NMT, developing a scheme to include such models in an
ensemble with multiple target representations.

7.2 Sub-character language representations

Just as vocabulary, style or other sentence content can affect the quality of a translation or
the convergence point of an NMT model trained on it, so too can the sentence’s surface-level
representation. For example, consider a model trained on sentences represented as word
sequences versus one trained on the same sentences represented as character sequences.
The character-based model might be more robust to spelling variation or novel inflections.
The word-based model might produce more literal word-for-word translations. Models that
encode or generate different surface-level representations of language are likely to provide
different benefits to different sentences. We may therefore wish to use different models in
different scenarios, as we often do for multi-domain NMT. As a result considerations made
for multi-domain NMT, like choice of model or ensemble at inference time, may also be
relevant here.

While a significant amount of existing work compares the benefits of character representa-
tions to word or subword language representations (Sec. 2.1.2), sub-character representations
are less well studied. In this section we present original work exploring the strengths and
weaknesses of sub-character representations, with a simple but novel inference-time scheme
allowing NMT models to translate unseen logographic characters. While we interpret differ-
ent surface-level text representations as behaving like domains, we do not adapt to them to
translate given sentences, but explore their effects on translation quality for those sentences.

7.2.1 Sub-character decomposition for unseen characters

While Neural Machine Translation (NMT) has evolved rapidly in recent years, not all of its
successful techniques are equally applicable to all language pairs. A particular example is
the representation and translation of unseen tokens, which do not appear in the training data.
With techniques like BPE subword decomposition (Sennrich, Haddow, and Birch, 2016d), an
unseen word in an alphabetic language can in the worst case be represented as a sequence of
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Char Meaning Sub-characters Semantic sub-character
森 Forest 木木木 木 (Tree)
鰯 Sardine 魚弱 魚 (Fish)
校 School 木交 木 (Tree)

Table 7.1 Some characters with sub-character decompositions given by CHISE. Not all
decompositions or sub-characters convey the semantic meaning of the character.

characters. Since alphabetic languages usually have few unique characters, it is reasonable to
assume that all of these ‘back-off’ characters will be present in the limited model vocabulary.

We focus instead on the translation of unseen logographic characters as used in Chinese
and Japanese text into alphabetic languages, a task that remains a challenge for NMT.
Logographic writing systems may have many thousands of logograms, each representing at
least one word, morpheme or concept as well as conveying phonetic and prosodic information.
Inevitably some characters will either not be present in the training data, or will be present
but too rare to be included in the vocabulary.

If the model is required to translate a previously unseen character, it will usually be
replaced with an UNK (unknown word) token. The most likely outcome is that it will be
ignored by the translation model, which will instead rely on the context of the unseen
character to produce the translation. In the worst case, the presence of a previously-unseen
character at inference time may harm the translation quality. This is a particular concern for
NMT in low-resource domains, where there are fewer training examples to provide useful
lexical context for unseen character translation.

Many logographic characters share sub-character components1, which can carry semantic
or phonetic meaning (Table 7.1). An intuitive approach to the logogram sparsity problem in
NLP uses sub-character decompositions in place of characters.

Prior work on using sub-character decompositions in NMT has focused on leveraging
shared sub-characters to improve Chinese-Japanese translation (Zhang and Komachi, 2019;
Zhang and Komachi, 2018). The typical approach in this work is to decompose all logograms
and learn BPE vocabularies over sub-character sequences.

We identify two motivations for using sub-characters in logographic NMT:

1. Sharing vocabularies between languages with similar sub-character decompositions,
as in Chinese-Japanese translation.

1As discussed in Sec. 2.1.2 214 sub-character units are considered to be non-decomposable radicals, which
are defined as a block in Unicode as of version 3.0 (Consortium, 2000). Here we follow prior work in using
shallower decompositions which can include non-radical sub-character units.
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2. Representing unseen characters – those not appearing in the training data – in semanti-
cally meaningful ways.

Our hypothesis is that, while complete sub-character decomposition for all characters
might be useful in case 1, only some characters benefit from only semantic elements of the
decomposition in case 2. In this section our focus is case 2. Using the representation-domain
analogy, we could say that sentences with unseen characters constitute a small domain.
We propose that it is better to approach this ‘domain’ with a specific model or inference
procedure, rather than attempt to use the same approach for all sentences regardless of unseen
character content.

The novel contributions described in this section are as follows:

• We compare ideograph-based sub-character schemes for Chinese-to-English and
Japanese-to-English NMT with a strong BPE subword baseline, for both high- and
low-resource domain translation.

• We evaluate both on general test sets, and on challenge sets which we construct such
that all sentences have at least one character that was not seen in the training data.

• We demonstrate that, counter-intuitively, training models with indiscriminate sub-
character decomposition can harm unseen character translation. Such models also give
inconsistent performance on sentences with no unseen characters.

• We instead propose a set of extremely straightforward inference-time sub-character
decomposition schemes requiring no additional models or training.

Sub-character decomposition schemes

Over 80% of Chinese characters can be broken down into both a semantic and a phonetic
component (Liu, Chung, et al., 2010). The semantic meaning of a Chinese character often
corresponds to the sub-character occupying its top or left position (Hoosain, 1991). These
may be (but are not always) radicals: sub-characters that cannot be broken down any further.
However, even top- or left-position radicals are not necessarily directly meaningful, as
demonstrated in Table 7.1. Radical魚 (‘fish’) has an intuitive semantic relationship with the
character鰯 (‘sardine’), but the semantic connection of radical木 (‘tree’) to character校
(‘school’) is more abstract. The phonetic component is less likely to be helpful for translation
to a non-logographic language, except in the case of transliterations.
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Training with sub-character decomposition

We first explore the impact of two variations on ideograph-based sub-character decomposition
applied to all characters in the source language. Following Zhang and Komachi (2019) we use
decomposition information from the CHISE project2, which provides ideograph sequences
for CJK (Chinese-Japanese-Korean) characters. As well as ideographs, the sequences include
ideographic description characters (IDCs), which convey the structure of an ideograph. While
Zhang and Komachi (2019) use IDC information for Chinese-Japanese translation, use of
structural sub-character information has not yet been explored for NMT to an alphabetic
language.

IDCs may convey useful information about which sub-character component is likely
to be the semantic or phonetic component, but they also make character representations
significantly longer. We therefore compare training with sub-character decompositions with
and without the IDCs.

Inference-only sub-character decomposition

Applying sub-character decomposition to all characters for training decreases the vocabulary
size, but significantly lengthens source sequences. Additionally, all source characters are
decomposed regardless of whether they might benefit from decomposition. We propose an
alternative approach which applies sub-character decomposition only to unseen characters at
inference time.

We apply decomposition if a test source sentence 1) contains an unseen character which
2) can be decomposed into at least one sub-character that is already present in the vocabulary.
We do not include the entire decomposition, but keep only the sub-characters already in
the model vocabulary. We experiment with both keeping all in-vocabulary sub-characters,
and keeping only the leftmost (L) in-vocabulary sub-character from the break-down. We
consider the left-only approach to be a reasonable heuristic: the breakdown produces radicals
top-to-bottom and left-to-right, meaning the left-most radical will either be the top component
or the left component, which is frequently the semantic component (Hoosain, 1991).

The inference-only decomposition approach has several advantages over training with
sub-character decomposition. It is extremely fast, since decomposition is a pre-processing
step before inference. It does not require training from scratch with very long sequences,
which can harm overall performance. Sentences without unseen characters, which are
unlikely to benefit from decomposition, are left completely unchanged by the scheme.

2Accessed via https://github.com/cjkvi/cjkvi-ids
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Finally, the scheme is very flexible: decomposition can be applied to individual unseen
characters on a case-by-case basis if necessary. For example, the presence of the魚 (‘fish’)
radical on the left of a character very often indicates that the character is for a type of fish, so
applying inference-only decomposition to such characters will improve adequacy. Characters
can in principle be excluded from decomposition if they do not benefit from it.

We convert some sub-character components to their base forms to improve character
coverage. A small number of components change form in some cases. For example, 水
(‘water’), can exist as its own character or as a radical, but often becomes氵when used on the
left hand side of a character (e.g.池, ‘pond’). We manually define 30 such cases for inference-
only decomposition, swapping the changed radical (unlikely to be in the vocabulary) for
its base form (often in the vocabulary). This is unneeded when training with sub-character
decomposition as all forms can be included in the vocabulary.

Even when radicals are replaced with their base form, not all radicals will be present in
the vocabulary of a non-sub-character model. To address this problem we propose replacing
the out-of-vocabulary radical with an in-vocabulary, non-radical character that conveys a
related semantic meaning. Experimentally, we attempt this with a single character for both
Chinese and Japanese, replacing radical疒 (‘illness’), which is not in the vocabulary, with
character病 (‘illness’).

Finally, a very simple approach to unseen sub-characters is to remove them from source
sentences. This makes it unlikely that the character will be correctly translated, but saves the
model from translating an UNK. We only apply this to characters which could be decomposed,
so UNKs may still occur.

Examples of real sub-character decompositions for all schemes used in this work are
shown in Table 7.2. Note that only the sub-characters already present in the vocabulary are
included in inference-time decomposition, but for training decomposition all sub-characters
are likely to appear in the vocabulary.

7.2.2 Experimental setup

Data

For both Chinese-English and Japanese-English, we first train a baseline model on a larger
corpus and then adapt the same model to a smaller corpus. This lets us evaluate unseen
character translation in both higher- and lower-resource settings. In both cases we evaluate
on a corresponding standard test set where available, as well as an unseen characters test
set. The latter is constructed from training sentences containing at least one decomposable
logographic character otherwise not appearing in the training set. These sentences are held
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Decomposition 鰯 瘡

Baseline UNK UNK

Training decompose 魚弱 疒倉

Training decompose (IDC) ⿰魚弱 ⿸疒倉

Inference-only remove
Inference-only decompose 魚弱 倉

Inference-only decompose (L) 魚 倉

Inference-only decompose (replace unseen radical) 魚弱 病倉

Inference-only decompose (L, replace unseen radical) 魚 病

Table 7.2 Training and inference-only decompositions used in this work for two characters.
鰯 (‘sardine’) has in-vocabulary semantic component魚 (‘fish’) and瘡 (‘sores’) has out-of-
vocabulary semantic component疒 (‘illness’). Since sub-character疒is not in the vocabulary,
it does not appear in inference-only decomposition unless swapped with an in-vocabulary
character e.g. 病 (‘illness’).

Set Chinese-English Japanese-English
Training data source Proprietary CAS ASPEC KFTT
Train 50M 3M 2M 330K
General test set 2000 3981 1812 1160
Unseen chars test set 2140 1360 336 2243

Table 7.3 Sentence counts for Chinese-English and Japanese-English training and test sets.
Chinese-English proprietary and CAS training corpora have no standard test sets, so we use
the WMT news task WMT19 and WMT18 test sets respectively. The ‘unseen chars’ test sets
are held out from the corresponding training sets such that every sentence has at least one
unseen decomposable logographic character.
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out from the the training data, so any logographic characters appearing only in an ‘unseen
chars’ set are not seen at all during training.

To construct the unseen character set for the higher-resource domain we hold out training
sentences with logographic characters appearing infrequently3 in the whole corpus, then
filter for source/target sentence length ratio < 3.5. We build the BPE vocabularies (Sennrich,
Haddow, and Birch, 2016d) on the high-resource domain training set. The baseline source
and all target BPE vocabularies consist of character sequences, while the sub-character BPE
vocabularies consist of sub-character sequences, following Zhang and Komachi (2018). For
the lower-resource domains the unseen sets are held-out sentences containing logographic
characters not in the baseline source vocabulary, filtered as before.

For Chinese-English our baseline model is trained on a parallel training data set that is
proprietary to SDL plc. This set contains web-crawled data from a mix of domains – we
refer to it simply as the ‘proprietary’ dataset. We learn separate Chinese and English BPE
vocabularies on this corpus with 50K merges. For the lower-resource-domain model we
adapt to 3M sentence pairs from publicly available corpora made available by the Chinese
Academy of Sciences (CAS)4. Since neither of these training sets have standard test set splits,
we use the WMT news tasks test sets WMT19 and WMT18 zh-en for general evaluation of
the higher- and lower-resource cases respectively (Barrault et al., 2019). WMT19 contains
only seen characters, as do all but 2 lines of WMT18.

For Japanese-English, we train the higher-resource model on 2M scientific domain
sentence pairs from the ASPEC corpus (Nakazawa et al., 2016). We learn separate Japanese
and English BPE vocabularies on this corpus with 30K merges. Our smaller domain is the
Kyoto Free Translation Task (KFTT) corpus (Neubig, 2011). We use the standard test sets for
general evaluation. In the ASPEC test set 36 (2%) sentences contain unseen decomposable
characters, as well as 180 (15.5%) sentences in the KFTT test set.

Model, training and inference

Our NMT models are all Transformer models with hyperparameters according Tensor2Tensor’s
base setting and a batch size of 4K tokens. For the higher resource domain models we train
for 300K steps for Chinese-English and for 240K steps for Japanese-English. For the lower
resource domains we fine-tune the trained models for 30K and 10K steps respectively.

We conduct inference via beam search with beam size 4. For ASPEC evaluation we
evaluate Moses tokenized English with the Moses multi-bleu tool to correspond to the official

3No more than two occurrences for Chinese or three for Japanese, since Japanese has smaller datasets.
4Casia2015 and Casict2015 corpora from http://nlp.nju.edu.cn/cwmt-wmt/
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Decomposition Chinese-English Japanese-English
(training) Higher-resource Lower-resource Higher-resource Lower-resource

WMT19 Unseen WMT18 Unseen ASPEC Unseen KFTT Unseen
None (Baseline) 25.2 22.6 18.3 12.4 28.3 13.5 16.9 13.3
Decompose 24.9 22.6 17.5 11.4 26.9 14.8 16.2 12.5
Decompose IDC 24.8 22.5 18.2 12.4 26.4 14.7 16.2 12.4

Table 7.4 BLEU scores for training with different decomposition schemes for higher- and
lower-resource test sets. The baseline has no sub-character decomposition. Sub-character
decomposition during training fails to improve general translation, and only improves unseen
set translation for ASPEC, for which it also harms general translation.

WAT evaluation5. For all other results we report detokenized English using SacreBLEU. All
BLEU is for truecased English.

7.2.3 Experiments on the impact of sub-character representations for
unseen characters

We have two requirements when using sub-character decomposition for unseen character
translation:

• Sets with few unseen characters (all general test sets except KFTT) should not experi-
ence performance degradation in terms of BLEU.

• Translation performance on unseen characters should improve.

Unseen character translation improvement may not be detectable by BLEU score, since
the unseen character sets may only have one or two unseen characters per sentence. Moreover
generating a hypernym, such as ‘fish’ instead of ‘sardine’ for鰯, would not improve BLEU,
despite being a more adequate translation than UNK and a more correct translation than e.g.
‘salmon’. Consequently we also give translation examples for the most promising schemes at
training- and inference-time.

Training with decomposition harms general translation

In Table 7.4 we give results after training with sub-character decomposition schemes. We
start with a strong BPE baseline, and compare decomposition with and without the IDC
structural information described above. On general test sets, we see BLEU degradation
compared to the baseline, especially for Japanese-English. We note that our Japanese-English

5https://github.com/moses-smt/mosesdecoder/

https://github.com/moses-smt/mosesdecoder/
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Decomposition Chinese-English Japanese-English
(inference) Higher-resource Lower-resource Higher-resource Lower-resource

WMT19 Unseen WMT18 Unseen ASPEC Unseen KFTT Unseen
None (Baseline) 25.2 22.6 18.3 12.4 28.3 13.5 16.9 13.3
Remove unseen 25.2 23.0 18.3 12.4 28.4 15.0 16.8 13.5
Decompose unseen 25.2 22.7 18.3 11.8 28.3 14.2 16.7 12.9
Decompose unseen
(L only)

25.2 23.0 18.3 12.0 28.4 14.6 16.7 13.3

Table 7.5 Higher- and lower-resource test set BLEU scores for the baseline models of Table
7.4 with different inference-time decomposition methods. Line 1 is duplicated from Table
7.4. Inference-time decomposition performs about the same as the baseline on general test
sets, and some unseen sets see BLEU improvement.

ASPEC decomposed-training score is similar to the result for the same set achieved by
Zhang and Komachi (2018) with ideograph decomposition. However, our non-decomposed
baseline is much stronger, and so we are not able to replicate their finding that training with
sub-character decomposition is beneficial to NMT from logographic languages to English.
We suggest this degradation may be the result of training and inference with much longer
sequences, which are well-established as challenging for NMT (Koehn and Knowles, 2017).

Interestingly we find that adding IDCs, which lengthen sequences, performs slightly
better for the lower-resource cases, especially for Chinese-English. A possible explanation is
that the longer sequences regularize adaptation in these cases, avoiding over-fitting to the
highly specific lower-resource domains. However, these cases still show degradation relative
to the baseline.

On the unseen sets, training with sub-character decomposition outperforms the baseline
in terms of BLEU for the ASPEC unseen set. However, this is not a consistent result, with
the baseline performing best or joint best in all other cases.

Inference-only decomposition leaves seen character translation unchanged, and may
improve unseen character translation

Table 7.5 gives results for our inference-only unseen character decomposition schemes,
compared to the baseline with no decomposition. Inference time decomposition has no
effect on the Chinese-English test sets with no unseen characters. This is as we expect, since
these test sets are unchanged. For Japanese-English a slight decrease on the KFTT general
set (about 15% sentences with unseen characters) is balanced by a small improvement on
the ASPEC general set (2% sentences with unseen characters). These results give a strong
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advantage compared to training decomposition, which must be applied to all sentences
whether they benefit or not, degrading performance in the case of Japanese-English.

Test sets with many unseen characters have a range of BLEU performance under inference-
time decomposition. One consistent result is that left-only decomposition gives better scores
than using all sub-characters. This may be explained by the fact that representing a character
as multiple sub-characters may lead the model to generate a separate translation for each
sub-character, harming performance. By contrast the leftmost sub-character tends to be the
semantic component so may give good translation performance alone.

As a precision-based metric, BLEU is not an ideal measure of improving unseen character
translation. Any such improvements under decomposition are more likely to improve
adequacy than precision, since they often involve introducing synonyms or hypernyms.
This difficulty is highlighted by the strong performance of the ‘remove unseen’ scheme
which simply deletes unseen decomposable characters from source sentences. Clearly, such
a scheme cannot improve the translation of these characters, although it may reduce the
number of hypothesis tokens, inadvertently improving precision and therefore BLEU.

The higher performance of the decompose (L) scheme is more promising, since this is
likely to actually generate translations for unseen characters. On a similar note, replacing the
unseen ‘illness’ radical with a character conveying the same semantic meaning as described at
the end of Sec. 7.2.1 does not affect BLEU for any set, but we do see noticeable improvements
in adequacy for the handful of affected sentences.

Qualitative evaluation: inference-only decomposition can improve unseen character
translation

We provide example translations under different training and inference decomposition
schemes in Table 7.6. We observe some interesting differences in adequacy between training
decomposition and inference-only decomposition. In particular, both Japanese translations
with training decomposition feature a plausible but incorrect translation. With inference-only
decomposition the translation is less fluent, but more generic and consequently more correct.

We note that training with sub-character decomposition has an unfortunate tendency
to translate over-specific terms from spurious sub-character matches. For example, in the
first (ASPEC) Japanese example, 魚 (‘fish’) is also the radical in 鮭 (‘salmon’), and in
the second (KFTT) Japanese example,倉 (‘storehouse’) is also a major component in槍
(‘spear’). The model trained with sub-character decompositions therefore produces ‘salmon’
and ‘spear’ instead of ‘sardine’ and ‘measles’. Meanwhile the inference-only left-radical
heuristic produces ‘fish’ and ‘disease’, both of which are correct translations, if not reference-
matching.
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Chinese source (CAS) 飞肉切薄片，用蛋清糊上浆，下开水锅[汆]透捞出。
English reference Cut the wild chicken meat into thin slices, smear with egg white,

[scald] thoroughly.
Baseline Fleshy slice, slurry with egg whites, and get out of the boiling water

pan.
Training decompose Fly to cut sliver pieces of meat, slurp them with purine paste, and

pick them up from the open water pan.
Inference decompose Cut thin slices of meat, slurry with egg whites, get out of the boiling

water pan.
Japanese source (ASPEC) 空気中では[鰯]油が最も酸化されやすく，ついで亜麻仁油，

大豆油の順であった。

English reference Due to its high contents of DHA and EPA, [sardine] oil FFA was most
rapidly oxidized in air, followed by linseed and soybean oil FFAs.

Baseline In the air, the sate oil was most easily oxidized, followed by linseed
oil and soybean oil.

Training decompose In air, salmon oil was most susceptible to oxidation, followed by
linseed oil and soybean oil.

Inference decompose (L) Fish oil was most oxidized in air, followed by linseed oil and soybean
oil.

Japanese source (KFTT) 康元元年( 1256年)赤斑[瘡]により死去。
English reference In 1256, he died from [measles].
Baseline In 1256, he died of a red spot.
Training decompose In 1256, he died of a spear.
Inference decompose (L) In 1256, he died from a red spot storehouse.
Inference decompose (L,
replace radical)

In 1256, he died from a red spot disease.

Table 7.6 Examples of translation with different decomposition schemes from each of the
three unseen sets extracted from publicly available corpora. We compare the most consistent
training decomposition (no IDCs) and inference-only left-only (L) decomposition to the
baseline. In the final Japanese example, we additionally compare swapping the unseen radical
with an in-vocabulary character. Unseen characters and (approximate) reference translations
are marked in square brackets.
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We identify this pattern throughout the unseen-character sets for certain characters in
particular. Characters for concrete nouns, such as types of fish, illness, bird, tree, and so on
tend to be well-handled by inference-only decomposition with the left-sub-character heuristic
and failed by the training decomposition scheme.

More abstract characters are more challenging for both schemes, such as those with
radical 心 (‘heart’) which often refer to an emotion. However, a major benefit of our
approach is its flexibility; such poorly-handled characters could simply be excluded from the
decomposition scheme, or replaced with a more appropriate non-radical character as we do
for the ‘illness’ radical疒. Future work on this problem could involve determining the most
relevant sub-character component of an character, if any, rather than the simple left-only
heuristic.

7.2.4 Sub-character decomposition summary

We explore the effect of sub-character decomposition on NMT from logographic languages
into English. Decomposition for training may hurt general translation performance without
necessarily helping unseen character translation. A domain adaptation analogy would
consider a handful of challenging sentences, adapt a model to a set of spuriously connected
training examples, and then use that model to translate all sentences, challenging or otherwise.

We instead propose a flexible inference-time sub-character decomposition procedure
which targets unseen characters. We show that our scheme aids adequacy and reduces
misleading overly-specific translation in unseen character translation. The scheme is straight-
forward, requires no additional models or training, and has no negative impact on sentences
without unseen characters. Continuing the domain adaptation analogy, we can say we treat
sentences with unseen characters as a distinct domain, and therefore treat them differently
from other sentences at inference time.

7.3 Multi-representation ensembles for syntax-based NMT

In the previous section we demonstrated that the same sentence with a different representation
can be treated like a different domain. In this section we extend this idea to multiple-
representation ensembles. In Chapter 6 we showed that an ensemble of models from different
domains can combine the benefits of knowledge from component domains. Here we explore
ensembles of models with different target representations which benefit from the different
representations.
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Previous work has observed that NMT models trained to generate target syntax can
exhibit improved sentence structure (Aharoni and Goldberg, 2017; Eriguchi et al., 2017)
relative to those trained on plain-text, while plain-text models produce shorter sequences
and so may encode lexical information more easily (Nadejde et al., 2017). In other words,
syntactically annotated sentences and plain-text sentences can behave as complementary
domains.

We hypothesize that an NMT ensemble would be strengthened if its component models
were complementary in this way. However, ensembling typically requires component models
to make predictions relating to the same output sequence position at each time step. Models
producing different sentence representations must necessarily be synchronized to enable this.

In this section we first discuss practical considerations for representing target language
syntax in NMT. Specifically, we discuss schemes for including English syntactic information
in target sequences for Japanese-to-English translation. We then continue by developing
a formalism for ensembles containing models with multiple target representations. We
finally evaluate inference schemes with ensembles of models generating different syntax
representations, or ‘plain-text’ sentences with no additional syntactic tags.

7.3.1 NMT with target syntax

Very long sequences are known to pose a challenge for NMT (Koehn and Knowles, 2017).
We observed this effect in the previous section when including structural IDC elements in
sub-character decompositions. Including syntactic annotations, such as POS tags or elements
denoting the structure of a constituency tree, also significantly increases the length of a target
sequence. Table 7.7 gives examples of different possible syntactic annotations with average
number of tokens per sentence for ASPEC English training sentences. Adding a POS tag for
each word in the sequence approximately doubles the number of tokens needed to represent
the sentence6. A linearized constituency tree representation contains structural information
as well as POS tags and may be far longer.

We therefore propose a derivation-based representation which contains the same structural
information as the linearized constituency tree, but is more compact. A derivation as in line 4
of Table 7.7) represents the constituency tree as a sequence of generation rules obtained via a
left-first traversal of the tree. This form still contains a great deal of repeated information, as
every non-terminal appears initially on the right-hand side of a rule and later as the left-hand
side of a rule. We instead define a linearized derivation consisting of the right-hand side of
each rule. An end-of-rule marker, </R>, indicates the final non-terminal in each rule.

6In general sentence lengths do not quite double because each word has a single POS tag but may be
represented by multiple subwords.
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Representation Sample Mean length
1 Plain-text No complications occurred 27.5
2 POS/plain-text DT No NNS complications VBD occurred 53.3
3 Linearized tree (ROOT (S (NP (DT No ) (NNS complications ) ) (VP (VBD

occurred ) ) ) )
120.0

4 Derivation ROOT→S ; S→NP VP ; NP→DT NNS ; DT→No ;
NNS→complications ; VP→VBD ; VBD→occurred

-

5 Linearized
derivation

S</R> NP VP</R> DT NNS</R> No complications
VBD</R> occurred

73.8

Table 7.7 Examples for proposed representations. Lengths are for the first 1M ASPEC
English training sentences with BPE subwords (Sennrich, Haddow, and Birch, 2016d).

In this form every non-terminal appears exactly once. The original tree can be directly
reproduced from the linearized derivation sequence, so structural information is maintained.
The linearized derivation is still significantly longer than simply alternating POS tags with
plain-text, since it contains many additional non-terminals. However, it conveys the same
information as a linearized tree while being on average less than two thirds as long.

7.3.2 Ensembles with multiple target representations

Fig. 7.1 Multiple models in an ensemble may have different internal representations, but
the ensemble as a whole produces a single external representation. Internal representations
can be converted to the external representation, allowing synchronized inference with multi-
representation ensembles. Ignored tokens are indicated by ε .

Table 7.7 shows several different representations of the same hypothesis. We describe
ensembles containing models with different target sentence representations in terms of
internal representations and external representations. The ensembling decoder will produce a



124 Case study: Different sentence representations in NMT as complementary domains

Fig. 7.2 Transducer mapping internal to external representations. A partial hypothesis might
be o(xy2) in the external representation and i(xy1y2) in the internal representation.

single best hypothesis, or a list of the N best hypotheses, following the external representation.
The models constituting the ensemble each have their own internal representation, which
may or may not match the external representation. Examples are given in Figure 7.1 for
ensembles of two models, one with a POS/plain-text internal representation and one with a
plain-text internal representation.

To formulate an ensembling decoder over pairs of these representations, we assume we
have a transducer T that maps from internal to external representation. Let P be the paths in
T leading from the start state to any final state. A path p ∈ P maps internal representation
i(p) to external representation o(p).

We formalize the multi-representation ensemble for two models with different represen-
tations. We can do this without loss of generality since we only need to synchronize pairs
of internal and external representations. The synchronization could if necessary be defined
via a different T for each internal/external representation pair in the ensemble if it contained
more than two models.

We therefore assume that two NMT systems are trained, one using the internal represen-
tation and one using the external representation, giving models Pi and Po which we wish to
ensemble7. An ideal equal-weight ensembling of Pi and Po yields

p∗ = argmax
p∈P

Pi(i(p))Po(o(p)) (7.1)

with o(p∗) as the external representation of the translation.
In practice, beam decoding is performed in the external representation, i.e. over projec-

tions of paths in P 8. Let h = h1 . . .h j be a partial hypothesis in the external representation,

7For completeness we note that the external representation of the ensemble does not strictly need to match
the internal representation of any component model. However, this introduces unnecessary complexity and has
no benefit, since no constituent model would then correctly score the external representation.

8See the tokenization wrappers in https://github.com/ucam-smt/sgnmt

https://github.com/ucam-smt/sgnmt
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consisting of a path prefix x and a ‘current’ output token h j = o(y). The set of partial paths
yielding h are:

M(h) = {(x,y)|xyz ∈ P,o(x) = h< j,o(xy) = h} (7.2)

Here z is the path suffix. In other words, it must be possible to reach the end state in the
external representation via some z ∈ P . The ensembled score of h is then:

P(h j|h< j) = Po(h j|h< j)× max
(x,y)∈M(h)

Pi(i(y)|i(x)) (7.3)

The max performed for each partial hypothesis h is itself approximated by a beam search.
This leads to an outer beam search over external representations with inner beam searches for
the best matching internal representations. As search proceeds, each model score is updated
separately with its appropriate representation. Symbols in the internal representation are
consumed as needed to stay synchronized with the external representation, as illustrated in
Figure 7.2; epsilons are consumed with a probability of 1.

The complexity of the transduction depends on the representations. For example, mapping
from word to BPE representations is straightforward, and mapping from a linearized syntax
representation to plain-text simply deletes syntax tokens.

7.3.3 Experimental setup

Data

We report all experiments for Japanese-to-English translation. Our training data is the first
1M training sentences of the Japanese-English ASPEC data (Nakazawa et al., 2016). The
ASPEC training set is sorted by alignment quality, and the first 1M sentence pairs are much
cleaner than the subsequent 1M; we note that this results in different scores compared to
the Japanese-English ASPEC baseline in the previous section, where a major objective was
character coverage.

All models use plain-text BPE Japanese source sentences. English constituency trees are
obtained using CKYlark (Oda et al., 2015), with words replaced by BPE subwords. We train
separate Japanese (lowercased) and English (cased) BPE vocabularies on the plain-text, with
30K merges each. Non-terminals, including POS tags, are included as separate tokens. The
linearized derivation uses additional tokens for non-terminals with </R>. As we wish to
compare different target representations we train models with representations 1, 2, 3 and 5
shown in Table 7.7.
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Model, training and inference

We primarily experiment using Transformer models. All Transformer architectures are
Tensor2Tensor’s base Transformer model (Vaswani, Bengio, et al., 2018b) with a batch size
of 4096 tokens. In all cases we decode using SGNMT (Stahlberg, Hasler, Saunders, et al.,
2017) with beam size 4, using checkpoint averaging over the final 20 checkpoints.

For comparison with earlier target syntax work, we also train two RNN attention-based
seq2seq models (Bahdanau, Cho, et al., 2015) with normal SGD to produce plain-text BPE
sequences and linearized derivations. For these models we use embedding size 400, a single
BiLSTM layer of size 750, and a batch size of 80 sequences.

We decode with individual models and two-model ensembles, comparing results for
single-representation and multi-representation ensembles. Each multi-representation en-
semble consists of the plain-text BPE model and one other individual model. We report
case-sensitive BLEU for tokenized English using the multi-bleu tool to correspond to prior
work reported in official WAT evaluations.

7.3.4 Experiments on ensembles with multiple target representations

Syntactic representations benefit from large batch sizes

Syntactic representations involve much longer sequence lengths than plain-text representa-
tions. Our NMT framework defines batch size as total source and target tokens per batch,
so a syntactic model will ‘see’ fewer training sentence pairs per mini-batch gradient update.
During NMT training, by default, the gradients used to update model parameters are cal-
culated over individual mini-batches. A possible consequence is that batches with fewer
sequences per update may have ‘noisier’ estimated gradients than those with more sequences.
We therefore first investigate the susceptibility of syntax and plain-text representations to
training difficulties when varying batch size.

Simply increasing the batch size can potentially improve convergence while requiring
fewer model updates (Smith et al., 2018). However, with large batches the model size may
exceed available GPU memory. Training on multiple GPUs is another way to increase the
amount of data used to estimate gradients, but requires significant resources. Instead we
avoid the problem by using delayed SGD updates. We accumulate gradients over a fixed
number of batches before using the accumulated gradients to update the model. This lets us
effectively use very large batch sizes without requiring multiple GPUs.

We experiment with both delayed SGD updates and reducing the learning rate. The
results in Table 7.8 show that large batch training via delayed SGD updates can significantly
improve the translation performance of single Transformers models. The improvement is
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Representation Batches / update Learning rate Test BLEU

Plain-text
1 0.025 27.5
1 0.2 27.2
8 0.2 28.9

Linearized derivation
1 0.025 25.6
1 0.2 25.6
8 0.2 28.7

Table 7.8 Japanese-English ASPEC test set BLEU for single Transformer models with plain-
text and linearized derivation representations. Models are trained to convergence on 1M
ASPEC training sentences for batch size 4096 tokens.

particularly evident for the linearized derivation model, which produces longer sequences.
Accumulating the gradient over 8 batches of size 4096 gives a 1.7 BLEU improvement for
the plain-text model and 3.1 BLEU improvement for the linearized derivation model. While
Smith et al. (2018) suggest that decaying the learning rate can have a similar effect to large
batch training, we find that reducing the initial learning rate by a factor of 8 alone does not
give the same improvements.

We suggest that large batch training may be necessary for NMT with syntactically
annotated sentence representations to perform on par with plain-text NMT, possibly due to
increased gradient estimate noise. However, using ‘effective’ large batches with delayed
SGD updates appears to be sufficient. We use delayed SGD with 8 batches per gradient
update to train all remaining models in this section.

Multi-representation ensembles can improve syntax-based NMT

We proceed to compare individual NMT models trained on either plain-text or syntactically-
annotated sentence representations. Results are shown in Table 7.9. For comparison with
prior work on syntax for NMT, we first experiment with RNN-based models. We find that
RNN-based syntax models can equal plain-text RNN models as in Aharoni and Goldberg
(2017). Eriguchi et al. (2017) find that a translation model which also performs dependency
parsing achieves a 1 BLEU improvement on the same ASPEC test set, but over a much
weaker baseline.

Our plain-text Transformer baseline is very strong, outperforming the best listed system
on ASPEC Ja-En at time of experiments (an 8-model ensemble (Morishita, Suzuki, et al.,
2017)) as well as the best listed model of comparable size at time of writing (a single
Transformer base model trained on 3M sentences (Dabre et al., 2018)). Our syntax models
achieve similar results despite producing much longer sequences. Table 7.8 indicates that
large batch training is instrumental in this. Our plain-text models outperforms all syntax-
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Architecture Representation Dev BLEU Test BLEU

Seq2seq
Best WAT17 result (8-model ensemble)
(Morishita, Suzuki, et al., 2017)

- 28.4

Plain-text 21.6 21.2
Linearized derivation 21.9 21.2

Transformer

Best listed WAT result to date9using single
base Transformer (Dabre et al., 2018)

- 28.6

Plain-text 28.0 28.9
Linearized tree 28.2 28.4
Linearized derivation 28.5 28.7
POS/plain-text 28.5 29.1

Table 7.9 Single models on Ja-En. Contemporary evaluation results included for comparison.

Ensemble type Representation Test BLEU ∆

Single-representation
ensemble

Plain-text 29.2 0.3
Linearized tree 28.6 0.2

Linearized derivation 28.8 0.1
POS/plain-text 29.3 0.2

External representation Internal representation

Multi-representation
ensemble

Linearized tree Plain-text 28.9 0.0
Plain-text Linearized tree 28.7 -0.2
Plain-text Linearized derivation 28.8 -0.1
Linearized derivation Plain-text 29.4 0.5
POS/plain-text Plain-text 29.3 0.2
Plain-text POS/plain-text 29.4 0.3

Table 7.10 Ja-En Transformer ensembles. Column ∆ gives test BLEU improvement over best
component model in each ensemble.

based models except POS/plain-text. More compact syntax representations perform better,
with POS/plain-text outperforming linearized derivations, which outperform linearized trees.

Finally, we explore multi-representation ensembles containing plain-text and syntactically-
annotated sentence representations. Ensembles of two identical models trained with different
seeds only slightly improve over the single model (Table 7.10). However, an ensemble
of models producing plain-text and linearized derivations improves by 0.5 BLEU over the
plain-text baseline.

We note that it is necessary to choose internal and external representation carefully, as an
ensemble of the same two models with internal and external representation swapped performs
slightly worse than either model individually. In general, a multi-representation ensemble

1http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=2&o=4

http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=2&o=4
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Reference Low-energy electron microscope (LEEM) and photoelectron microscope
(PEEM) were attracted attention as new surface electron microscope.

Plain-text Low energy electron microscope (LEEM) and photoelectron microscope
(PEEM) are noticed as new surface electron microscope.

Linearized
derivation

Low-energy electron microscopy (LEEM) and photoelectron microscopy
(PEEM) are attracting attention as new surface electron microscopes.

Table 7.11 Sample generated translations from individual models, detokenized, with differ-
ences emphasized. We note that the reference itself may be ungrammatical, as in this case.
The linearized derivation model achieves verb tense agreement (present plural) and noun
agreement (‘as new ... microscopes’), unlike the other translations.

with a richer, syntax-augmented external representation tends to outperform an ensemble
where syntax tokens are only produced internally.

By ensembling syntax and plain-text we hope to benefit from their complementary
strengths. To highlight these, we examine hypotheses generated by the plain-text and
linearized derivation models. We find that the syntax model can be more grammatical, even
when the plain-text model may share more vocabulary with the reference (Table 7.11).

In ensembling plain-text with a syntax external representation we observed that in a
small proportion of cases non-terminals were over-generated, due to the mismatch in target
sequence lengths. Our solution was to penalize scores of non-terminals under the syntax
model by a constant factor.

It is also possible to constrain decoding of linearized trees and derivations to well-formed
outputs. However, we found that this gives little improvement in BLEU over unconstrained
decoding although it may be an interesting line of research for applications making use of
the generated parses.

7.3.5 Multi-representation ensembling summary

We report strong performance with individual models that improves over comparable publi-
cized shared task model results on the ASPEC Ja-En test set. We train these models using a
delayed SGD update training procedure that is especially effective for the long representa-
tions arising from including target language syntactic information in the output. We further
improve on the individual results via multi-representation ensembles. This inference scheme
allows ensembling of models producing different output representations, such as plain-text
with subword units and syntax.

These techniques were originally primarily proposed as practical approaches to including
target syntax in NMT. In the context of this thesis, they are also a further sign of the potential
benefits of using diverse systems to conduct inference.
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7.4 Conclusions

We view language representation as a form of domain with its own strengths and weaknesses
for translating different kinds of language. In this chapter we demonstrate that these ‘domains’
can be mutually beneficial given a scheme that allows their combination at inference time.

We describe in Sec. 7.2 how simple adjustments to the data representation alone can
significantly improve translation of unseen characters. By contrast, we find that extensive
changes to the data involving retraining a model from scratch do not necessarily solve
the coverage problem for logographic characters. Our unseen character ‘domain’-specific
approach out-performs the general-purpose modelling approach.

In Sec. 7.3 we develop a new formulation for ensembling that allows combination of pre-
dictions from models with multiple target representations. We find that these representations
can be complementary when combined in an ensemble.



Chapter 8

Case study: Gender bias reduction as a
domain adaptation problem

This chapter draws from Saunders and Byrne (2020b) throughout. Some aspects of Sec. 8.3
draw from my contributions to Tomalin et al. (Under review). Some aspects of Sec. 8.1 and
Sec. 8.5 draw from Saunders, Sallis, et al. (2020)

8.1 Motivation

This thesis has throughout described the advantages and pitfalls of domain-specific NMT.
Systems may specialize in translating specific topics or genres by adapting or weighting
towards language that occurs in a given domain. This can be thought of as a bias towards
certain translations under certain circumstances. Removing these biases might improve
generalization, but would not necessarily be advantageous when translating a specific domain
(Shah et al., 2020).

However, problems arise when the model learns spurious correlations, especially those
corresponding to human demographics. For example, an English-to-Spanish NMT model
might learn that sentences containing the word ‘doctor’ typically involve masculine pronouns
and referents and those containing ‘nurse’ involve feminine pronouns and referents. As a
result, the model might always translate ‘This is the doctor’ into a sentence with a masculine
inflected noun – ‘Este es el médico’ – and ‘This is the nurse’ into a sentence with a feminine
inflected noun – ‘Esta es la enfermera’.

As reviewed in Sec. 3.6, it has been recently demonstrated that NMT systems often
exhibit such behaviour, which we term gender bias: behaviour which ‘systematically and
unfairly discriminate[s] against certain individuals or groups of individuals in favor of others’
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(Friedman and Nissenbaum, 1996). Specifically, translation performance favours referents
fitting into groups corresponding to social stereotypes, such as male doctors.

Such systems propagate harms to users and referents. Referents may experience erasure –
for example, a non-male doctor or non-female nurse would be incorrectly gendered by the
above translations. Systems may also cause allocational harms if the incorrect translations
are used as inputs to other systems (Crawford, 2017). System users also experience represen-
tational harms via the reinforcement of stereotypes associating occupations with a particular
gender (Abbasi et al., 2019). Even if they are not the referent, the user may not wish for
their words to be translated in such a way that they appear to endorse social stereotypes.
The user will also experience a lower quality of service in receiving grammatically incorrect
translations. To summarize, it is desirable to avoid this behaviour if possible.

In this chapter we address our final research question from Sec. 1.1.1, discussing schemes
for mitigating gender bias in NMT inspired by the connection between useful domain-specific
bias and undesirable gender bias. We apply data selection, model adaptation and inference
techniques from throughout this thesis. Our approaches achieve significant improvements
with very little computational cost by treating gender bias in NMT as a domain adaptation
problem.

In Sec. 8.2 we describe the evaluation framework and metrics used throughout this
chapter for measuring the effects of gender bias on NMT. In Sec. 8.3 we describe data-centric
approaches to mitigating gender bias, both re-training on adjusted datasets and adapting
to synthetic or semi-synthetic data. In Sec 8.4 we address the problem of catastrophic
forgetting when adapting to a small, synthetic dataset by applying regularized adaptation and
constrained inference techniques. In Sec. 8.5 we explore the concept of gender ‘domain’
signals in more detail, introducing explicit source-language word-level gender tags.

8.2 Measuring gender bias in NMT

WinoMT (Stanovsky et al., 2019) is a challenge set for evaluating gender bias in NMT
across language pairs when translating from English. It permits automatic bias evaluation for
translation into ten target languages with grammatical gender. The source side of WinoMT
is 3888 gender-labelled sentences from Winogender (Rudinger et al., 2018) and WinoBias
(Zhao, Wang, et al., 2018). The structure of the WinoMT test set is given in Table 8.1.

The test set is a set of coreference resolution examples in which each sentence contains a
primary entity which is co-referent with a pronoun, as well as secondary entity. An example
is the first sentence in WinoMT:

The developer argued with the designer because she did not like the design.
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Label WinoMT subset
Full Pro-stereotypical Anti-stereotypical

Male 1826 792 794
Female 1822 792 790
Neutral 240 0 0

Table 8.1 Summary of sentence counts for different gender labels for WinoMT (Stanovsky
et al., 2019)

The primary entity is ‘the developer’, which is co-referent with the pronoun ‘she’. The
translation of ‘the developer’ should therefore be feminine-inflected for languages that
gender-inflect human-referent nouns. The secondary entity is ‘the designer’, which should
be gendered according to linguistic conventions for human-referent nouns where gender is
ambiguous, unless additional context is available. In the languages handled by WinoMT the
default inflection for ambiguous cases is the masculine1.

We note there is semantic ambiguity in some English sentences used in WinoMT
(González et al., 2020). Perhaps in the above example the designer, specializing in design, is
scornful of the developer’s attempts. For the majority of this chapter we will nevertheless
rely on WinoMT as a well-recognized and broadly applied test set for gender translation
(Kocmi, Limisiewicz, et al., 2020). In Sec. 8.5 we also explore the effects of removing the
semantic ambiguity with explicit gender tags.

WinoMT evaluation extracts the grammatical gender of the primary entity from each
translation hypothesis by automatic word alignment followed by morphological analysis.
WinoMT then compares the translated primary entity with the gold gender, with the objective
being a correctly gendered translation.

The WinoMT test set has approximately equal numbers of male- and female- labelled sen-
tences, with a small number of neutral-labelled sentences (Table 8.1) The authors emphasize
the following metrics over the challenge set:

• Accuracy – percentage of hypotheses with the correctly gendered primary entity.

• ∆∆∆GGG – difference in F1 score between the set of sentences with masculine entities and
the set with feminine entities.

• ∆∆∆SSS – difference in accuracy between the set of sentences with pro-stereotypical (‘pro’)
entities and those with anti-stereotypical (‘anti’) entities, as determined by Zhao, Wang,
et al. (2018) using US labour statistics. For example, the ‘pro’ set contains male
doctors and female nurses, while ‘anti’ contains female doctors and male nurses.

1Although this is not the case for all gender-inflected languages (Corbett et al., 1999).
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Our main objective is increasing accuracy – the percentage of correctly inflected primary
entities. We also report on ∆G and ∆S for ease of comparison to previous work. Ideally the
absolute values of ∆G and ∆S should be close to 0. A high positive ∆G indicates that a model
translates male entities better, while a high positive ∆S indicates that a model stereotypes
male and female entities. Large negative values for ∆G and ∆S, indicating a bias towards
female or anti-stereotypical translation, are as undesirable as large positive values.

We note that ∆S can be significantly skewed by low-accuracy systems. A model gener-
ating male forms for most test sentences, stereotypical roles or not, will have very low ∆S,
since its pro- and anti-stereotypical class accuracy will both be about 50%.

We wish to reduce gender bias without reducing translation performance. WinoMT is
designed to work without target language references, and so it is not possible to measure
translation performance on this set by measures such as BLEU. We therefore report BLEU
on separate, general test sets for each language pair.

8.3 Reducing the effects of gender bias in NMT by chang-
ing the training data

In this section we compare data-centric approaches to reducing the effects of gender bias
in NMT models, comparing different datasets for retraining and adaptation purposes. Our
hypothesis is that the absence of gender bias can be treated as a small domain for the
purposes of NMT model adaptation. In this case adaptation to a well-formed small ‘in-
domain’ dataset may give better results than attempts at removing bias-inducing sentences
from the entire original dataset. This adaptation approach can be viewed as an attempt to
‘unlearn’ problematic behaviour in much the same way as our data-centric, filtering-based
approaches aimed to reduce exposure bias effects in Sec. 4.3.

8.3.1 Datasets for training and adaptation

Complete manual ‘debiasing’ is infeasible. Human language is both complex and evolving,
and the contexts in which different human populations interact with NLP tools are also
subject to change, leading to the possibility of new, emergent biases (Bender and Friedman,
2018). We are therefore unable to predict all possible negative model behaviours or the
data features that might trigger them. Consequently, work on negative model behaviour
generally focuses on clearly-defined instances of undesirable language correlations, such as
the profession-oriented gender bias assessed by WinoMT. Even considering these specific
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subsets of language, a machine translation dataset typically contains millions of parallel
sentence pairs, which would simply be impractical for manual human editing.

However, some level of masculine-feminine vocabulary occurrence or co-occurrence
balancing can be automated. We explore this approach for reducing gender bias in bilingual
training data prior to training as a contrast to creating a small, synthetic dataset for mitigating
gender bias post-training.

Up- and down-sampling

Up-sampling and down-sampling the original dataset are intuitive strategies for simply chang-
ing the ratio of gendered terms in the training set. When down-sampling we automatically
remove data until the overall counts of English masculine and feminine gendered terms are
approximately equal. When up-sampling we automatically add duplicated data until the
counts are approximately equal.

By ‘gendered term’ we include many pronouns, nouns and terms of address that possess
gender-related connotations in English. We identify ‘gendered sentences’ as those containing
at least one gendered antonym from the list used by Zhao, Wang, et al. (2018). The list
consists of 104 English word-pairs where the words are gendered antonyms of each other
(e.g., ‘son/daughter’, ‘he/she’, ‘husband/wife’)2.

The schemes for down- and up-sampling the dataset were as follows:

• Iterate through the English side of all sentence pairs, counting the number of masculine
and feminine gendered entities in each sentence.

• If down-sampling:

– Add a sentence pair to the final dataset only if the English side has the same
number of masculine and feminine entities.

• If up-sampling:

– Include all gendered sentence pairs in the final dataset

– Estimate the overall gender skew as the total number of masculine entities in all
English sentences minus the total number of feminine entities

– Continue to iterate through gendered sentence pairs, adding them to the final
dataset again if they reduce the absolute overall skew.

2The stopword list and a ‘gender-swapping’ script are from the authors of Zhao, Wang, et al. (2018) at
https://github.com/uclanlp/corefBias.

https://github.com/uclanlp/corefBias
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– Stop when overall skew reaches 0.

The down-sampling scheme described above ensures that every single batch of sentences
has equal numbers of masculine and feminine gendered terms on the English side, which
would not be the case if individually gender-skewed sentences were included in the dataset.
It moreover usefully demonstrates a potential approach to data ‘balancing’ prior to training.
Intuitive alternatives to the up-sampling scheme described above include a greedy approach,
adding additional sentences in an order that maximally reduces the skew, and a cautious
approach, adding only those sentences with minimal skew. The greedy approach adds fewer
sentences, but individual sentences will necessarily be more skewed on the English side.
The cautious approach results in significantly more up-sampling and hence data duplication.
Aside from their questionable efficacy, exploring these alternatives is very expensive, since
model retraining can take days for a high-resource language pair like English-German. We
believe our randomized approach is a reasonable compromise.

Semi-synthetic counterfactual datasets

Fig. 8.1 Generating counterfactual datasets for adaptation. The Original set is 1||2, a simple
subset of the full dataset. FTrans original is 1||3, FTrans swapped is 4||5, and Balanced
is 1,4||2,5

For contrast, we describe an approximately counterfactual dataset for both retraining and
fine-tuning. Counterfactual data augmentation is an intuitive solution to bias from data over-
representation (Lu et al., 2018). It involves identifying the subset of sentences containing
bias – in this case gendered terms – and, for each one, adding an equivalent sentence with
the bias reversed – in this case a gender-swapped version.
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Gender-swapping is relatively simple for English, which does not mark grammatical
gender morphologically in articles or verbs, and only occasionally for nouns (e.g., ‘actor’
/ ‘actress’). However, the process is more complex for inflected languages where all the
gendered parts-of-speech that occur in a sentence must be identified and updated. As well,
gender-swapping translation training data requires that the same entities are swapped in the
corresponding parallel sentence. A robust scheme for gender-swapping multiple entities
in inflected language sentences directly, together with corresponding parallel text, would
be a research project in itself3. Instead we suggest a rough but straightforward approach
for counterfactual data augmentation for machine translation from English. To the best of
our knowledge this is the first application of counterfactual data augmentation to parallel
sentences.

We first perform simple gender-swapping on the subset of the English source sentences
with gendered terms. We use the same set of gendered terms from Zhao, Wang, et al. (2018)
as for up- and down-sampling, as well as their swapping script. We then greedily forward-
translate the gender-swapped English sentences with a baseline NMT model trained on the
the full source and target text, producing gender-swapped target language sentences.

This lets us compare four related sets for counterfactual data adaptation, as illustrated in
Figure 8.1:

• Original: a subset of parallel sentences from the original training data where the
source sentence contains gendered stopwords.

• Forward-translated (FTrans) original: the source side of the original set with
forward-translated target sentences.

• Forward-translated (FTrans) swapped: the original source sentences are gender-
swapped, then forward-translated to produce gender-swapped target sentences.

• Balanced: the concatenation of the original and FTrans swapped parallel datasets.
This is twice the size of the other counterfactual sets.

Comparing performance in adaptation of FTrans swapped and FTrans original lets us
distinguish between the effects of gender-swapping and of obtaining target sentences from
forward-translation. We also include a comparison to using counterfactual data augmentation
when training from scratch. In this case we simply shuffle FTrans swapped into the original
dataset.

3See Zmigrod et al. (2019) for a discussion of some of the difficulties in monolingual gender-based data
augmentation for languages with rich morphology.
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Synthetic profession datasets

Finally, we construct a tiny, trivial set of synthetic sentences for fine-tuning with equal
numbers of masculine and feminine entities. We first define English sentences which we can
easily translate into each target language. The sentences follow the template:

The [PROFESSION] finished [his|her] work.

We refer to this as the handcrafted set. Each profession is from the list collected by Prates
et al. (2019) from US labour statistics. We simplify this list by removing field-specific
adjectives. For example, we have a single profession ‘engineer’, as opposed to specifying
industrial engineer, locomotive engineer, etc. In total we select 194 professions, giving just
388 sentences in a gender-balanced set.

With manually translated masculine and feminine templates, we simply translate the
masculine and feminine forms of each listed profession for each target language. In practice
this translation is via an MT first-pass for speed, followed by manual checking, but given
available lexicons this could be further automated. We note that the handcrafted sets contain
no examples of coreference resolution and very little variety in terms of grammatical gender.
In Sec. 8.5 we describe sets of more complex sentences targeted at the coreference task, as
well as extensions to gender-neutral language.

We wish to distinguish between a model which improves gender translation, and one
which improves its WinoMT scores simply by learning the vocabulary for previously unseen
or uncommon professions. We therefore create a handcrafted no-overlap set, removing
source sentences with professions occurring in WinoMT to leave 216 sentences. We increase
this set back to 388 examples with balanced adjective-based sentences in the same pattern,
e.g. The tall [man|woman] finished [his|her] work.

8.3.2 Experimental setup

Data

WinoMT provides an evaluation framework for translation from English to eight diverse
languages. We select three pairs for experiments: English to German (en-de), English to
Spanish (en-es) and English to Hebrew (en-he). Our selection covers three language groups
with varying linguistic properties: Germanic, Romance and Semitic. Training data available
for each language pair also varies in quantity and quality. We filter training data based on
parallel sentence lengths and length ratios.

For en-de, we use 17.6M sentence pairs from WMT19 news task datasets (Barrault et al.,
2019). We validate on newstest17 and test on newstest18.
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For en-es we use 10M sentence pairs from the United Nations Parallel Corpus (Ziemski
et al., 2016). While still a large set, the UNCorpus exhibits far less diversity than the en-de
training data. We validate on newstest12 and test on newstest13.

For en-he we use 185K sentence pairs from the multilingual TED talks corpus (Cettolo,
Niehues, Stüker, Bentivogli, and Federico, 2014). This is both a specialized domain and a
much smaller training set. We validate on the IWSLT 2012 test set and test on IWSLT 2014.

Table 8.2 summarises the sizes of datasets used, including their proportion of gendered
sentences and ratio of sentences in the English source data containing male and female
stopwords. A gendered sentence contains at least one English gendered stopword as used by
Zhao, Wang, et al. (2018).

Interestingly all three datasets have about the same proportion of gendered sentences:
11-12% of the overall set. While en-es appears to have a much more balanced gender
ratio than the other pairs, examining the data shows this stems largely from sections of the
UNCorpus containing phrases like ‘empower women’ and ‘violence against women’, rather
than gender-balanced professional entities.

Training Gendered training M:F Test
en-de 17.5M 2.1M 2.4 3K
en-es 10M 1.1M 1.1 3K
en-he 185K 21.4K 1.8 1K

Table 8.2 Parallel sentence counts. A gendered sentence pair has minimum one gendered
stopword on the English side. M:F is ratio of male vs female gendered training sentences.

For en-de and en-es we learn joint 32K BPE vocabularies on the training data (Sennrich,
Haddow, and Birch, 2016d). For en-he we use separate source and target vocabularies. The
Hebrew vocabulary is a 2K-merge BPE vocabulary, following the recommendations of Ding
et al. (2019) for smaller vocabularies when translating into lower-resource languages. For the
en-he source vocabulary we experimented both with learning a new 32K vocabulary and with
reusing the joint BPE vocabulary trained on the largest set – en-de – which lets us initialize
the en-he system with the pre-trained en-de model. The latter resulted in higher BLEU and
faster training.

Model, training and inference

For all models we use a Transformer model with the ‘base’ parameter settings given in
Tensor2Tensor. We train baselines to validation set BLEU convergence on one GPU, delaying
gradient updates by factor 4 to simulate 4 GPUs (Saunders, Stahlberg, de Gispert, et al.,
2018). During fine-tuning training is continued without learning rate resetting. Normal and
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lattice-constrained decoding is via SGNMT with beam size 4. BLEU scores are calculated
for case-sensitive, detokenized output using SacreBLEU.

8.3.3 Experiments in improving gender translation accuracy with data-
centric methods

Baseline analysis

en-de en-es en-he
Acc ∆G ∆S Acc ∆G ∆S Acc ∆G ∆S

Microsoft 74.1 0.0 30.2 47.3 36.8 23.2 48.1 14.9 32.9
Google 59.4 12.5 12.5 53.1 23.4 21.3 53.7 7.9 37.8
Amazon 62.4 12.9 16.7 59.4 15.4 22.3 50.5 10.3 47.3
SYSTRAN 48.6 34.5 10.3 45.6 46.3 15.0 46.6 20.5 24.5
Baseline 60.1 18.6 13.4 49.6 36.7 2.0 51.3 15.1 26.4

Table 8.3 WinoMT accuracy, masculine/feminine bias score ∆G and pro/anti stereotypical
bias score ∆S for our baselines compared to commercial systems, whose scores are quoted
directly from Stanovsky et al. (2019).

In Table 8.3 we compare our three baselines to commercial systems on WinoMT, using
results quoted directly from Stanovsky et al. (2019). Our baselines achieve comparable
accuracy, masculine/feminine bias score ∆G and pro/anti stereotypical bias score ∆S to four
commercial translation systems, outscoring at least one system for each metric on each
language pair.

The ∆S for our en-es baseline is surprisingly small. Investigation shows this model
predicts male and female entities in a ratio of over 6:1. Since almost all entities are translated
as male, pro- and anti-stereotypical class accuracy are both about 50%, making ∆S very
small. This highlights the importance of considering ∆S in the context of other metrics, such
as ∆G, which should be close to 0, and the ratio of M:F predictions, which should be 1.0 on
the original WinoMT set.

Mitigating gender bias by retraining on ‘balanced’ data

In Table 8.4 we experiment with retraining models from scratch. We carry out these exper-
iments for the English-to-German model only since this system has the highest WinoMT
accuracy and BLEU score by a large margin, meaning its counterfactual forward-translated
data is likely to be higher quality than for the other language pairs. As well, it has the largest
amount of data overall, meaning that the added data is likely to come from a wide spread of
sources and is less likely to result in over-fitting.
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System Sentence pairs BLEU Acc M:F ∆∆∆GGG ∆∆∆SSS
Baseline 17.2M 42.7 60.1 3.4 18.6 13.4
Downsampled 15.5M 38.2 47.9 7.1 39.8 8.0
Upsampled 18.1M 40.4 62.0 3.0 14.6 17.5
Counterfactual 18.6M 41.1 59.1 3.4 19.0 9.0

Table 8.4 General test set BLEU and WinoMT scores when training from scratch on English-
German data with gendered sentence up-sampling, down-sampling and counterfactual data
augmentation.

Retraining on any of the ‘gender-balanced’ training sets results in considerably worse
general MT performance than the baseline system. The highest BLEU score is obtained
by the counterfactual system, but it is still 1.6 points lower than the baseline score. The
down-sampled system, in addition to a low BLEU score (4.5 points lower than the baseline),
has a low accuracy score and a very high ∆ G score. None of the systems show large gains
over the baseline for gender accuracy.

The best gender accuracy improvement over the baseline occurs with up-sampling.
Up-sampling gives a 3.2% relative improvement in accuracy, corresponding to a 5.4%
relative decrease in translation quality. These results suggest that this approach to removing
gender bias from MT training data prior to training without affecting translation quality
is not effective. The data-centric retraining schemes not only decrease general translation
performance as measured by BLEU, but also fail to significantly improve the performance of
the system in relation to gender-specific metrics.

One reason for this under-performance is the presence of default inflections in gender-
inflected target languages. While sentences may appear to have equal male and female
entities on the English side, many apparently ungendered phrases in English would default to
masculine constructions in the target language. For example, the phrase ‘engineers say’ would
be translated to German as ‘Ingenieure sagen’ – a construction implying masculine gender,
following German linguistic conventions. Adjusting only sentences that are identifiably
gendered in English has a negligible impact on the number of default masculine constructions
in the target language.

We note that all systems have very high M:F ratios, which as previously discussed
reduces the relevance of ∆S. In particular, the down-sampling scheme is likely to remove
rare examples of feminine constructions, resulting in a system which defaults to masculine
forms for almost all German words. The result is a WinoMT M:F prediction ratio of over
7:1, a very high ∆G score (i.e., most masculine sentences correct, most feminine sentences
incorrect) and a very low ∆S score (i.e., almost all entities are predicted as male, whether
pro-stereotypical or anti-stereotypical).
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By contrast, up-sampling does slightly improve accuracy and more significantly improves
∆ G score under WinoMT, possible since the number of feminine grammatical constructions
seen during training increases. This is the desired result, but male and female entities
are still predicted in a ratio of 3:1, when the true test set ratio is 1:1. The up-sampling
scheme also results in reduced general translation performance and an increased ∆S score.
Both of these results can be attributed to over-fitting on the duplicated feminine training
sentences, consolidating gender roles present in the training data. This result is, however,
an indication that adding data is more likely to be effective than removing it. Training with
the counterfactual dataset suffers the smallest general translation performance degradation,
indicating a relative advantage of creating synthetic data.

Adaptation to semi-synthetic datasets

en-de en-es en-he
BLEU Acc ∆G ∆S BLEU Acc ∆G ∆S BLEU Acc ∆G ∆S

Baseline 42.7 60.1 18.6 13.4 27.8 49.6 36.7 2.0 23.8 51.3 15.1 26.4
Original 41.8 60.7 15.9 15.6 28.3 53.0 24.3 10.8 23.5 53.6 12.2 31.7
FTrans original 43.3 60.0 20.0 13.9 27.4 51.6 31.6 -4.8 23.4 48.7 23.0 20.9
FTrans swapped 43.4 63.0 15.4 12.7 27.4 53.7 24.5 -3.8 23.7 48.1 20.7 22.7
Balanced 42.5 64.0 12.6 12.4 27.7 52.8 26.2 1.9 23.8 48.3 20.8 24.0

Table 8.5 General test set BLEU and WinoMT scores after unregularized fine-tuning the
baseline on four gender-based adaptation datasets. Improvements are inconsistent across
language pairs.

Table 8.5 compares our baseline model with the results of unregularized fine-tuning on
the counterfactual sets described in Section 8.3.1.

Fine-tuning for one epoch on original, a subset of the original data with gendered English
stopwords, gives slight improvement in WinoMT accuracy and ∆G for all language pairs,
while ∆S worsens. We suggest this set consolidates examples present in the full dataset,
improving performance on gendered entities generally but emphasizing stereotypical roles.

On the FTrans original set ∆G increases sharply relative to the original set, while ∆S
decreases. We suspect this set suffers from bias amplification (Zhao, Wang, et al., 2017)
introduced by the baseline system during forward-translation. The model therefore over-
predicts male entities even more heavily than we would expect given the gender makeup of
the adaptation data’s source side. Over-predicting male entities lowers ∆S artificially.

Adapting to FTrans swapped increases accuracy and decreases both ∆G and ∆S relative
to the baseline for en-de and en-es. This is the desired result, but not a particularly strong one,
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and it is not replicated for en-he. The balanced set has a very similar effect to the FTrans
swapped set, with a smaller test BLEU difference from the baseline.

We do find that the largest improvement in WinoMT accuracy consistently corresponds to
the model predicting male and female entities in the closest ratio. However, the best ratios for
models adapted to these datasets are 2:1 or higher, and the accuracy improvement is small.

Overall, improvements from fine-tuning on counterfactual datasets (FTrans swapped and
balanced) are present. However, they are not very different from the improvements when fine-
tuning on equivalent non-counterfactual sets (original and FTrans original). Improvements
are also inconsistent across language pairs.

Handcrafted profession set adaptation

en-de en-es en-he
BLEU Acc ∆G ∆S BLEU Acc ∆G ∆S BLEU Acc ∆G ∆S

1 Baseline 42.7 60.1 18.6 13.4 27.8 49.6 36.7 2.0 23.8 51.3 15.1 26.4
2 Balanced 42.5 64.0 12.6 12.4 27.7 52.8 26.2 1.9 23.8 48.3 20.8 24.0
3 Handcrafted (no

overlap)
40.6 71.2 3.9 10.6 26.5 64.1 9.5 -10.3 23.1 56.5 -6.2 28.9

4 Handcrafted 40.8 78.3 -0.7 6.5 26.7 68.6 5.2 -8.7 22.9 65.7 -3.3 20.2
Table 8.6 General test set BLEU and WinoMT scores after fine-tuning on the handcrafted
profession set, compared to fine-tuning on the most consistent counterfactual set. Lines 1-2
duplicated from Table 8.5

Results for fine-tuning on the handcrafted set are given in lines 3-4 of Table 8.6. These
experiments take place in minutes on a single GPU, compared to several hours when fine-
tuning on the counterfactual sets and far longer when training from scratch.

Fine-tuning on the handcrafted sets gives a much faster BLEU drop than fine-tuning
on counterfactual sets. This is unsurprising since the handcrafted sets are domains of new
sentences with consistent sentence length and structure, making them easy to over-fit. By
contrast the counterfactual sets are less repetitive and close to subsets of the original training
data, slowing forgetting.

Line 4 of Table 8.6 adapts to the handcrafted set, stopping when validation BLEU
degrades by 5% on each language pair. This is approximately the same BLEU degradation
as experienced when retraining with up-sampling in Table 8.4, which reached 62% WinoMT
accuracy for en-de. When adapting to the handcrafted set, a similar BLEU degradation
corresponds to a WinoMT accuracy up to 19 points above the baseline. This is also far more
WinoMT improvement than the best counterfactual result.
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When adapting to the handcrafted set difference in gender score ∆G also improves by
at least a factor of 4. Stereotyping score ∆S also improves far more than for counterfactual
fine-tuning. Unlike the Table 8.5 results, the improvement is consistent across all WinoMT
metrics and all language pairs.

The model adapted to no-overlap handcrafted data (line 3) gives a similar drop in BLEU
to the model in line 4. This model also gives stronger and more consistent WinoMT
improvements over the baseline compared to the balanced counterfactual set, despite the
implausibly strict scenario of no English profession vocabulary in common with the challenge
set. This demonstrates that the adapted model does not simply memorize vocabulary.

8.3.4 Summary of data-centric approaches to gender bias

In this section we explore data-centric approaches to reducing gender bias in NMT. We
demonstrate that, while it is possible to increase the number of feminine-inflected entities
in natural bilingual data, retraining from scratch or fine-tuning on such data does not result
in strong improvements in terms of gender accuracy, and general translation ability can be
harmed.

Fine-tuning on a small, synthetic data-set also tends to degrade general translation
performance, but allows extremely strong improvements on the gender bias test set with
very little computational cost. The improvements are clear even when accounting for the
possibility of vocabulary memorisation.

8.4 Avoiding catastrophic forgetting while adapting to re-
duce bias

In the previous section, we were able to significantly improve gender translation accuracy
via domain adaptation to a very small synthetic dataset. However, doing so also resulted in
catastrophic forgetting of general translation ability as measured by BLEU. In this section we
aim to address this downside of our synthetic adaptation scheme using regularized domain
adaptation and lattice-constrained inference.

We previously explored the effectiveness of regularized training to avoid catastrophic
forgetting during domain adaptation in Sec. 5.2 of this thesis. In particular, we found that
EWC is generally effective at allowing improvements on the new domain while reducing
forgetting. We therefore mitigate catastrophic forgetting while adapting to reduce bias by
applying EWC.
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Lattice constrained inference was applied in Sec. 7.3 to allow ensemble decoding with
models producing different target representations. In that case the lattice defined mappings
between two data representations with different levels of syntactic annotation. In this chapter
we instead use lattices to define mappings between gender-inflected search spaces. The
mapping is from the set of word inflections present in the original translation to a set of many
alternately-gendered word inflections.

8.4.1 Rescoring gender-inflected search spaces

(a) A subset of flower transducer T . T maps vocabulary to itself as well as to differently-gendered
inflections.

(b) Acceptor YB representing the biased first-pass translation yB for source fragment ’the doctor’. The
German hypothesis has the male form.

(c) Gender-inflected search space constructed from the biased hypothesis ‘der Arzt’. Projection of
the composition YB ◦T contains paths with differently-gendered inflections of the original biased
hypothesis. This lattice can now be rescored by an adapted model which is less affected by gender
bias.

Fig. 8.2 Finite State Transducers for lattice rescoring.

Here we describe our lattice rescoring scheme for avoiding catastrophic forgetting when
mitigating gender bias. We assume we have two NMT models. With one we decode fluent
translations which contain gender bias (B). For the one-best hypothesis we would translate:

yB = argmaxy pB(y|x) (8.1)

The other model has undergone some form of fine-tuning (FT ) to reduce bias effects at a
cost to translation performance, producing:

yFT = argmaxy pFT (y|x) (8.2)
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We construct a flower transducer T that maps each word in the target language’s vocabulary
to itself, as well as to other forms of the same word with different gender inflections (Figure
8.2a). We also construct YB, a lattice with one path representing the biased but fluent
hypothesis yB (Figure 8.2b).

The acceptor P(yB) = projoutput(YB ◦T ) defines a language consisting of all the gender-
inflected versions of the biased first-pass translation yB that are allowed by T (Figure 8.2c).
We can now decode with lattice rescoring (LR) by constraining inference to P(yB):

yLR = argmaxy∈P(yB)
pFT (y|x) (8.3)

In practice we use beam search, not an argmax, to decode the various hypotheses. We
construct T using heuristics on large vocabulary lists for each target language.

8.4.2 Experimental setup

We use the same models and data as in the previous section. For regularized adaptation we
apply EWC when performance on the original validation set drops. We select the weighting
hyperparameter Λ via validation set BLEU.

For lattice rescoring we require a transducer T containing gender-inflected forms of words
in the target vocabulary. To obtain the vocabulary for German we use all unique words in the
full target training dataset. For Spanish and Hebrew, which have smaller and less diverse
training sets, we use 2018 OpenSubtitles word lists4. We then use DEMorphy (Altinok, 2018)
for German, spaCy (Honnibal and Montani, 2017) for Spanish and the small set of gendered
suffixes for Hebrew (Schwarzwald, 1982) to approximately lemmatize each vocabulary word
and generate its alternately-gendered forms5. While there are almost certainly paths in T
containing non-words, we expect these to have low likelihood under the rescoring models.
For lattice compositions we use the efficient OpenFST implementations (Allauzen, Riley,
et al., 2007).

8.4.3 Experiments in improving gender translation accuracy while main-
taining translation performance

Fine-tuning to convergence and EWC regularization

The drop in BLEU and improvement on WinoMT can be explored by varying the training
procedure. The model of line 5 in Table 8.7 simply adapts to handcrafted data for more

4Accessed Oct 2019 from https://github.com/hermitdave/FrequencyWords/.
5Inflection lists and scripts are available at the github https://github.com/DCSaunders/gender-debias.

https://github.com/hermitdave/FrequencyWords/
https://github.com/DCSaunders/gender-debias
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en-de en-es en-he
BLEU Acc ∆G ∆S BLEU Acc ∆G ∆S BLEU Acc ∆G ∆S

1 Baseline 42.7 60.1 18.6 13.4 27.8 49.6 36.7 2.0 23.8 51.3 15.1 26.4
2 Balanced 42.5 64.0 12.6 12.4 27.7 52.8 26.2 1.9 23.8 48.3 20.8 24.0
3 Handcrafted (no

overlap)
40.6 71.2 3.9 10.6 26.5 64.1 9.5 -10.3 23.1 56.5 -6.2 28.9

4 Handcrafted 40.8 78.3 -0.7 6.5 26.7 68.6 5.2 -8.7 22.9 65.7 -3.3 20.2
5 Handcrafted

(converged)
36.5 85.3 -3.2 6.3 25.3 72.4 0.8 -3.9 22.5 72.6 -4.2 21.0

6 Handcrafted
EWC

42.2 74.2 2.2 8.4 27.2 67.8 5.8 -8.2 23.3 65.2 -0.4 25.3

7 Rescore 1 with 3 42.7 68.3 7.6 11.8 27.8 62.4 11.1 -9.7 23.9 56.2 2.8 23.0
8 Rescore 1 with 4 42.7 74.5 2.1 6.5 27.8 64.2 9.7 -10.8 23.9 58.4 2.7 18.6
9 Rescore 1 with 5 42.5 81.7 -2.4 1.5 27.7 68.4 5.6 -8.0 23.6 63.8 0.7 12.9
Table 8.7 General test set BLEU and WinoMT scores after fine-tuning on the handcrafted
profession set, compared to fine-tuning on the most consistent counterfactual set. Lines 1-4
duplicated from Table 8.6. Lines 5-6 vary adaptation training procedure. Lines 7-9 apply
lattice rescoring to baseline hypotheses.

iterations with no regularization, to approximate loss convergence on the handcrafted set.
This leads to a severe drop in BLEU, but even higher WinoMT scores.

In line 6 we regularize adaptation with EWC. There is a trade-off between general
translation performance and WinoMT accuracy. With EWC regularization tuned to balance
validation BLEU and WinoMT accuracy, the decrease is limited to about 0.5 BLEU on each
language pair. Adapting to convergence, as in line 5, would lead to further WinoMT gains at
the expense of BLEU.

The purpose of EWC regularization is to avoid catastrophic forgetting of general trans-
lation ability. This does not occur in the counterfactual experiments (e.g. line 2), with
a maximum loss of 0.2 BLEU relative to the baseline, so we do not apply EWC. More-
over, WinoMT accuracy gains are small with standard fine-tuning, which allows maximum
adaptation: we suspect EWC would prevent any improvements.

Lattice rescoring with less biased models

In lines 7-9 of Table 8.7 we consider lattice-rescoring the baseline output, using three models
fine-tuned on the handcrafted data.

Line 7 rescores the general test set hypotheses (line 1) with a model adapted to handcrafted
data that has no source language profession vocabulary overlap with the test set (line 3). This
scheme shows no BLEU degradation from the baseline on any language and in fact a slight
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improvement on en-he. Accuracy improvements on WinoMT are only slightly lower than for
decoding with the rescoring model directly, as in line 3.

In line 8, lattice rescoring with the non-converged model adapted to handcrafted data (line
4) likewise leaves general BLEU unchanged or slightly improved. When lattice rescoring the
WinoMT challenge set, 79%, 76% and 49% of the accuracy improvement is maintained on
en-de, en-es and en-he respectively. This corresponds to accuracy gains of up to 30% relative
to the baselines with no general translation performance loss.

In line 9, lattice-rescoring with the converged model of line 5 limits BLEU degradation to
0.2 BLEU on all languages, while maintaining 85%, 82% and 58% of the WinoMT accuracy
improvement from the converged model for the three language pairs. Lattice rescoring with
this model gives accuracy improvements over the baseline of 36%, 38% and 24% for en-de,
en-es and en-he.

Rescoring en-he maintains a much smaller proportion of WinoMT accuracy improvement
than en-de and en-es. We believe this is because the en-he baseline is particularly weak. The
weakness may be due to a small and non-diverse training set, as the baseline must produce
some inflection of the correct entity before lattice rescoring can have an effect on gender
bias. Alternatively it may be a language-specific effect: some Hebrew gendered terms are
distinguished only by vowel changes, many of which are marked only by diacritics which
are usually excluded from text. The WinoMT procedure itself may therefore be noisy for
English-Hebrew assessment. We note that, in general, automatic morphological analysis for
Hebrew remains challenging (Tsarfaty et al., 2019).

Reducing gender bias in ‘black box’ commercial systems

en-de en-es en-he
Acc ∆G ∆S Acc ∆G ∆S Acc ∆G ∆S

1 82.0 (74.1) -3.0 (0.0) 4.0 (30.2) 65.8 (47.3) 3.8 (36.8) 1.9 (23.2) 63.9 (48.1) -2.6 (14.9) 23.8 (32.9)
2 80.0 (59.4) -3.0 (12.5) 2.7 (12.5) 68.9 (53.1) 0.6 (23.4) 4.6 (21.3) 64.6 (53.7) -1.8 (7.9) 21.5 (37.8)
3 81.8 (62.4) -2.6 (12.9) 4.3 (16.7) 71.1 (59.4) 0.7 (15.4) 6.7 (22.3) 62.8 (50.5) -1.1 (10.3) 26.9 (47.3)
4 78.4 (48.6) -4.0 (34.5) 5.3 (10.3) 66.0 (45.6) 4.2 (46.3) -2.1 (15.0) 62.5 (46.6) -2.0 (20.5) 10.2 (24.5)

Table 8.8 We generate gender-inflected lattices from commercial system translations, col-
lected by Stanovsky et al. (2019) (1: Microsoft, 2: Google, 3: Amazon, 4: SYSTRAN). We
then rescore with the bias-reduced model from line 5 of Table 8.7. Scores are for the rescored
hypotheses, with bracketed baseline scores duplicated from Table 8.3.

We note that EWC requires access to the original model parameters and training data
in order to estimate the Fisher information (see Sec. 5.2.) However, lattice rescoring only
requires access to the original model’s translations, a gender-inflection transducer, and a
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% Non-null compositions
G = T G = T ′

(HypM ◦G)◦Re fM 68.0 68.0
(HypM ◦G)◦Re fF 57.7 68.0
(HypF ◦G)◦Re fM 45.4 45.9
(HypF ◦G)◦Re fF 39.7 45.9

Table 8.9 For en-de, we obtain hypothesis translations (Hyp) for the masculine (M) and
feminine (F) halves of the handcrafted set using the baseline system. We compose the
hypotheses with either the true gender-inflection lattice T , or an augmented version, T ′

containing all inflection mappings in the handcrafted reference sentences. We then compose
the result with either M or F reference (Re f ).

model with good gender translation accuracy to perform rescoring. The rescoring model
does not necessarily need to be a fine-tuned version of the original model.

This allows us to apply lattice rescoring with the gender inflection transducer to trans-
lations of WinoMT6 from the commercial systems listed in Table 8.3. Results are given in
Table 8.8. We rescore these lattices with our model achieving the strongest WinoMT scores
(line 5 of Table 8.7). We find this substantially improves WinoMT accuracy for all systems
and language pairs.

One interesting observation is that WinoMT accuracy after rescoring tends to fall in
a fairly narrow range for each language relative to the performance range of the baseline
systems. For example, a 25.5% range in baseline en-de accuracy becomes a 3.6% range
after rescoring. This suggests that our rescoring approach is not limited as much by the bias
level of the baseline system as by the gender-inflection transducer and the models used in
rescoring. Indeed, we emphasize that the large improvements reported in Table 8.8 do not
require any knowledge of the commercial systems or the data they were trained on; we use
only the translation hypotheses they produce and our own rescoring model and transducer.

Inflected search space coverage

We can investigate the limits of the gender-inflection transducer for rescoring behaviour by
finding the proportion of reference sentences that exist in the rescoring search space. We
conduct these experiments with the handcrafted dataset, since we have no references for
WinoMT, for English-German, the language pair which reaches the highest accuracy. We
use the baseline model to produce hypotheses for the masculine and feminine halves of the

6The raw commercial system translations are provided by the authors of Stanovsky et al. (2019) at https:
//github.com/gabrielStanovsky/mt gender.

https://github.com/gabrielStanovsky/mt_gender
https://github.com/gabrielStanovsky/mt_gender
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dataset. We compose these with the gender-inflected lattice, and measure the proportion of
masculine and feminine reference sentences present in the resulting search spaces.

The results (Table 8.9) confirm that the baseline hypothesizes feminine forms far less
frequently than masculine forms. In other words the reference is far more likely to be present
in the search space if the hypothesis was masculine. Explicitly augmenting the transducer
with reference mappings increases the proportion of references that are findable, suggesting
weaknesses in the transducer, although reference augmentation does not compensate for the
baseline system bias. We note that these results are on the handcrafted data, and therefore
not necessarily a hard limit on performance for rescoring the WinoMT set.

8.4.4 Summary: mitigating catastrophic forgetting and gender bias

Simple gender-domain adaptation on a small synthetic dataset allows swift improvement in
gender translation accuracy, but causes general translation ability to degrade. We demonstrate
two approaches to limit this: EWC and a lattice rescoring approach. Both allow gender
bias mitigation while maintaining general translation performance. Both approaches have
complications: EWC requires access to the original model parameters and representative
training data to compute the regularization parameters, while lattice rescoring is a two-step
procedure. We find the lattice rescoring approach allows far greater improvements in gender
accuracy than EWC and potentially no BLEU degradation, without requiring access to the
original model or dataset.

8.5 Effects of tagged adaptation for controllable gender
signals

So far in this chapter we have discussed approaches to mitigating gender bias in NMT that
rely on ‘gender signals’. These are typically words in the source sentence, such as gendered
pronouns. An NMT system must accomplish two distinct tasks to make use of such gender
signals: identifying the gender signal or feature, and then applying it to translate the relevant
words in the source sentence. So far we have assumed that if we could correctly identify the
genders of all entities in a source sentence we could translate into the target language with
correct inflections, reducing the effects of gender bias.

We proceed to explore this assumption. We propose a scheme for incorporating an
explicit gender inflection tag into NMT, particularly for translating coreference sentences
where the reference gender label is known. Experimenting with translation from English
to Spanish and English to German, the more successful systems from the previous section,
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we find that simple existing approaches over-generalize from a gender signal, incorrectly
using the same inflection for every entity in the sentence. We show that a tagged-coreference
adaptation approach is effective for combatting this behaviour. Although we only work with
English source sentences to extend prior work, we note that this approach can be extended to
source languages without inherent gender signals like gendered pronouns, unlike approaches
that rely on those signals.

Intuitively, if gender tagging does not perform well when it can use the label determined
by human coreference resolution, it is likely to be less useful when a gender label must be
automatically inferred. Conversely, gender tagging that is effective in this scenario may be
beneficial when the user can specify the gender of the referent, such as Google Translate’s
translation inflection selection (Johnson, 2018), or for translations where the genders of
all human referents are known. We also explore automatic gender tagging for English test
sentences for cases in which the genders of human referents are not known.

Existing work in NMT gender bias has focused on the translation of sentences based on
binary gender signals, such as exclusively male or female personal pronouns. This effectively
highlights gender biases in translation between masculine and feminine referents. However,
it also excludes and erases those who do not use binary gendered language, including but
not limited to non-binary individuals (Cao and Daumé III, 2020; Zimman, 2017). Using
synthetic adaptation data with gender tags allows us to define new, controllable gender
inflection translations. We therefore explore applying tagging to indicate gender-neutral
referents, and produce a WinoMT-style test set to assess translation of coreference sentences
with gender-neutral entities.

8.5.1 Assessing second-entity and neutral translation

Feature over-generalization and second-entity translation

We note a comment by Rudinger et al. (2018), who develop a portion of the English WinoMT
source sentences, that Winograd schemas ‘may demonstrate the presence of gender bias
in a system, but not prove its absence.’ The authors review manifestations of gender bias
in language which are not analysed at all by the schemas. However we here consider one
example, gender-feature over-generalization, which can be further assessed with WinoMT.
Considering the previous WinoMT example:

The developer argued with the designer because she did not like the design.

For this sentence, high WinoMT accuracy can be achieved by using the labelled gender
inflection, or equivalently the inflection of the gendered pronoun, for both primary and
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Label Original WinoMT Our WinoMT
Full Pro Anti Secondary Neutral Neutral secondary

Male 1826 792 794 1826 0 0
Female 1822 792 790 1822 0 0
Neutral 240 0 0 240 1826 1826

Table 8.10 Summary of sentence counts for different gender labels for WinoMT. Original
WinoMT sets are from Stanovsky et al. (2019) (full, pro-sterotypical and anti-stereotypical).
Our extended WinoMT sets assess secondary entities in original WinoMT, neutral-labelled
primary entities, and secondary entities in the neutral-labelled primary entities set.

secondary entities. This is true for all WinoMT test sentences, even though each sentence
only specifies the gender of the primary entity.

We therefore produce a test set for the WinoMT framework to track the gender inflection
of the secondary entity in each original WinoMT sentence (e.g. ‘the designer’ in the above
example). We measure second-entity inflection correspondence with the gender label, which
we refer to as L2. High L2 suggests that ‘the designer’ would also have feminine inflection
in a translation of the above example, despite not being coreferent with the pronoun.

We are particularly interested in cases where L2 increases over a baseline, or high ∆∆∆L2.
Many factors may contribute to a baseline system’s L2, but we are specifically interested in
whether adding gender features affects only the words they are intended to affect. High ∆L2
indicates a system learning to over-generalize from available gender features. We consider
this as erasing the secondary referents, and therefore as undesirable behaviour.

Exploring gender-neutral translation

We wish to extend previous machine translation coreference research to the translation of
gender-neutral language, which may be used by non-binary individuals or to avoid the social
impact of using gendered language (Misersky et al., 2019; Zimman, 2017). Recently Cao
and Daumé III (2020) have encouraged inclusion of non-binary referents in NLP coreference
work. Their study focuses heavily on English, where gender-neutral language such as singular
they is in increasingly common use (Bradley et al., 2019); the authors acknowledge that
‘some extensions ... to languages with grammatical gender are non-trivial’.

In particular, existing NMT gender bias test sets typically analyse behaviour in languages
with grammatical gender that corresponds to a referent’s gender. Translation into these
languages is effective in highlighting differences in translation between masculine and
feminine referents, but these languages also often lack widely-accepted conventions for
gender-neutral language (Ackerman, 2019; Hord, 2016). In some languages with binary
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grammatical gender it is possible to avoid gendering referents by using passive or reflexive
grammar, but such constructions can themselves invalidate individual identities (Auxland,
2020).

We therefore explore a proof-of-concept scheme for translating tagged neutral language
into inflected languages by introducing synthetic gender-neutral placeholder articles and noun
inflections in the target language. For example, we represent the gender-neutral inflection of
‘el entrenador’ (the trainer) as ‘DEF entrenadorW END’

A variety of gender-neutral inflections have been proposed for various grammatically
gendered languages, such as e or x Spanish (Papadopoulos, 2019) and Portuguese (Auxland,
2020) noun inflections instead of masculine o and feminine a. These language-specific
approaches may develop in various forms within and across social networks, and can shift
over time (Shroy, 2016). Our intent is not to prescribe which should be used, but to explore
an approach which in principle could be extended to various real inflection schemes.

We construct additional ‘neutral-augmented’ versions of the adaptation sets described in
8.5.4, adding ‘The [adjective] person finished [their|the] work’ sentences to the adjective-
based sets and sentences like ‘The trainer [N] finished [their|the] work’ to the profession-
based sets, with synthetic placeholder articles DEF and inflections W END on the target side
of profession sentences. We give examples for Spanish and German in Table 8.11. We
also construct a neutral-label-only version of WinoMT containing the 1826 unique binary
templates filled with they/them/their. We report results on the original and neutral-augmented
sets separately for ease of comparison with prior work.

8.5.2 Controlling gender inflection

We wish to investigate whether a system can translate into inflected languages correctly
correctly given the reference gender label of a certain word. Our proposed approach involves
fine-tuning a model on a synthetic set of sentences which have gender tags. At test time we
assign the reference gender label to the words whose gender inflection we wish to control. In
the example of the first WinoMT sentence discussed earlier, the gender label is ‘female’ and
the primary entity is ‘the developer’, so the tagged sentence becomes:

The developer [F] argued with the designer because she did not like the design.

We only tag the primary entity in test sentences, but also assess the inflection of the secondary
entity in response to these tags using the secondary-entity set discussed above.

As our baseline, we take the handcrafted no-overlap set described in Sec. 8.3.1, as it
allows strong improvements in WinoMT accuracy while avoiding the confounding effects of
vocabulary memorization. In this section we refer to this set as V0 for brevity.
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English source German target Spanish target

V0
the trainer finished his work der Trainer beendete seine Arbeit el entrenador terminó su trabajo
the trainer finished her work die Trainerin beendete ihre Arbeit la entrenadora terminó su trabajo
the trainer finished their work DEF TrainerW END beendete PRP

Arbeit
DEF entrenadorW END terminó su
trabajo

V1 the trainer [M] finished his
work

der Trainer beendete seine Arbeit el entrenador terminó su trabajo

V2 the trainer [F] finished the
work

die Trainerin beendete die Arbeit la entrenadora terminó el trabajo

V3 the trainer [N] and the chore-
ographer [M] finished the work

DEF TrainerW END und der Chore-
ograf beendeten die Arbeit

DEF entrenadorW END y el
coreógrafo terminaron el trabajo

V4 the trainer [F], the choreogra-
pher [N]

die Trainerin, DEF Chore-
ografW END

la entrenadora, DEF

coreógrafW END

Table 8.11 Examples of the tagging schemes explored in this chapter. Adjective-based
sentences (e.g. ‘the tall woman finished her work’) are never tagged. For neutral target
sentences, we define synthetic placeholder articles DEF and noun inflections W END, as well
as a placeholder possessive pronoun for German PRP

We then propose four gender-tagged variations on V0 which we illustrate in Table 8.11.
In the first, V1, we add a gender tag following professions only (we do not tag adjective-based
sentences since ‘man’ and ‘woman’ are already distinct words in English).

For the second, V2, we use the same tagging scheme but note that the possessive pronoun
offers a gender signal that may conflate with the tag, so change all examples to ‘... finished
the work’.

The third, V3, is the same as V2 but in each profession-based sentence a second
profession-based entity with a different gender inflection tag is added. This set is intended to
discourage systems from over-generalizing one tag to all sentence entities.

In the final scheme, V47, we simplify V3 to a minimal, lexicon-like pattern:

The [entity1], the [entity2].

Both entities are tagged. We remove all adjective-based sentences, leaving only tagged
coreference entities for adaptation. This set has the advantage of using simpler language than
other sets, making it easier to extend to new target languages.

8.5.3 Experimental setup

For this task, we assess English-to-German and English-to-Spanish NMT, as these were the
systems that saw strong gender accuracy improvement under previous approaches. Models
and baseline training are as described in the previous sections. We define gender tags as

7V4 proposed by R. Sallis as part of a MEng thesis in progress (Sallis, 2021).
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System Labelled WinoMT en-de en-es
BLEU Acc ∆L2 BLEU Acc ∆L2

Baseline × 42.7 60.1 - 27.8 49.6 -
V0 × 42.4 82.3 27.4 27.7 66.3 29.7
V1 X 42.5 81.7 26.6 27.7 69.0 26.4
V2 X 42.5 84.1 24.2 27.5 70.9 13.2
V3 X 42.6 77.4 1.1 27.5 80.6 0.3
V4 X 42.6 80.6 2.0 27.6 83.1 8.7

Table 8.12 Test BLEU, WinoMT primary-entity accuracy (Acc), and change in second-entity
label correspondence ∆L2. We adapt the baseline to a synthetic set without tags (V0), or to
one of the binary gender-inflection tagging schemes (V1-4). ‘Labelled WinoMT’ indicates
whether WinoMT primary entities are tagged with their reference gender label. All results
are for rescoring the baseline system gendered-alternative lattices with the listed model.

unique vocabulary items which only appear in the source sentence. We adapt to synthetic data
with minibatches of 256 tokens for 64 training updates, which we found gave the strongest
accuracy improvements when fine-tuning on the handcrafted no-overlap (V0) datasets. This
results in different BLEU score and WinoMT accuracy from the results of Table 8.7.

The V3 sets have about 30% more tokens, the V4 sets about 30% fewer and the neutral-
augmented sets about 50% more: we adjust the adaptation steps accordingly for these
cases.8

For all results we rescore the baseline system gendered-alternative lattices with the listed
model as described in Sec. 8.4.1. This constrains the output hypothesis to be a gender-
inflected version of the original baseline hypothesis. For the gender-neutral experiments we
add synthetic inflections and articles to the lattices.

When assessing automatic test set tagging we use the RoBERTa (Liu, Ott, et al., 2019)
pronoun disambiguation function tuned on Winograd Schema Challenge data as described in
Fairseq documentation9.

8.5.4 Avoiding over-generalization with tagging schemes

Measured improvements in gender accuracy are often accompanied by over-generalization

Table 8.12 gives BLEU score and primary-entity accuracy for the original, binary versions of
synthetic adaptation sets described in section 8.5.4. WinoMT test sentences have primary
entities tagged with their gender label if the adaptation set had tags, and are unlabelled

8Adaptation and tagged test sets are available at the github https://github.com/DCSaunders/
tagged-gender-coref.

9https://github.com/pytorch/fairseq/tree/master/examples/roberta/wsc.

https://github.com/DCSaunders/tagged-gender-coref
https://github.com/DCSaunders/tagged-gender-coref
https://github.com/pytorch/fairseq/tree/master/examples/roberta/wsc
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otherwise. We note that lattice rescoring keeps the general test set score within 0.3 BLEU of
the baseline, and focus on the variation in WinoMT performance.

Primary-entity WinoMT accuracy does increase significantly over the baseline for all
adaptation schemes. V3 and V4, which contain multi-entity examples, are particularly
effective for en-es, while V2, which contains a single entity, is more effective for en-de. We
hypothesize this reflects the difference in baseline quality: the stronger en-de baseline is
more likely to have already seen multiple-entity sentences.

We also report ∆L2, the change in the secondary entity’s label correspondence compared
to the baseline. High ∆L2 implies that the model is over-generalizing a gender signal intended
for the primary entity to the secondary entity. In other words, the gender signal intended for
the primary entity has a very strong influence on the translation of the secondary entity. ∆L2
does indeed increase strongly from the baseline for the V0 and V1 systems, confirming our
suspicion that these models trained on sentences with a single entity simply learn to apply
any gender feature to both entities in the test sentences indiscriminately.

Remarkably, for adaptation to V0 and V1 datasets we found that the secondary entity is
inflected to correspond with the pronoun more often than the primary entity which is labelled
as coreferent with it. A possible explanation is that the secondary entity occurs at the start
of the sentence in about two thirds of test sentences, compared to about one third for the
primary entity. Adapting to single-entity test sets may encourage the model to simply inflect
the first entity in the sentence using the gender signal.

For V2, where the source possessive pronoun is removed and the tag is the only gender
signal, ∆L2 still increases significantly, although less than for V1. This indicates that even if
the only signal is a gender tag applied directly to the correct word, it may be wrongly taken
as a signal to inflect other words. The V3 scheme is the most promising, with a 17% increase
in accuracy for en-de and a 30% increase for en-es corresponding to very small changes in
L2, suggesting this model minimizes over-generalization from gender features beyond the
tagged word. V4 performs similarly to V3 for en-de but suffers from an L2 increase for
en-es. It is possible that a lexicon-style set with tags in every example may cause undesirable
over-generalisation.

Labelled and unlabelled test sentences

Table 8.13 lists accuracy and ∆L2 with and without WinoMT source sentence labelling
for the same systems as Table 8.12. V1 gives similar performance to the original V0 set
with and without WinoMT labelling. Removing the possessive pronoun as in V2 decreases
accuracy compared to V1 without labelling and slightly increases it with labelling, suggesting
removing the source pronoun forces the model to rely on the gender tag.
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System en-de en-es
Unlabelled Auto-labelled Ref labelled Unlabelled Auto-labelled Ref labelled
Acc ∆L2 Acc ∆L2 Acc ∆L2 Acc ∆L2 Acc ∆L2 Acc ∆L2

Baseline 60.1 - - - - - 49.6 - - - - -
V0 82.3 27.4 - - - - 66.3 29.7 - - - -
V1 81.5 26.6 81.7 26.5 81.7 26.6 67.3 29.6 68.5 31.2 69.0 26.4
V2 71.2 9.2 83.6 24.8 84.1 24.2 52.1 3.5 69.7 18.4 70.9 13.2
V3 57.5 -5.8 79.9 3.7 77.4 1.1 47.9 -2.5 77.7 6.4 80.6 0.3
V4 60.5 -2.0 79.2 4.6 80.6 2.0 48.5 -0.6 80.6 12.6 83.1 8.7

Table 8.13 WinoMT accuracy and change in second-entity label correspondence for the
adaptation schemes in Table 8.12 when changing how tags are determined for WinoMT
source sentences. The primary entity’s gender label in each test sentence is either unlabelled,
auto-labelled with RoBERTa, or labelled with the reference gender.

Accuracy under V2-4 improves dramatically when gender labels are added to WinoMT
primary entities. Without labels the accuracy for these systems improves far less or not at all.
This is unsurprising: the gender tag is the only way to infer the correct target inflection when
adapting to these datasets. Nevertheless some accuracy improvement is still possible with
neither tags nor possessive pronouns, possibly because the model ‘sees’ more examples of
profession constructions in the target language.

Without test set labels, the V3 and V4 systems have negative ∆L2, implying that the
second entity’s inflection corresponds to the primary entity label less often than for the
baseline. This is not necessarily bad, as they are still low absolute values. Small absolute
∆L2 indicates that added primary-entity gender signals have little impact on the secondary
entity relative to the baseline, which is the desired behaviour. Small negative values are
therefore better than large positive values.

Auto-labelling WinoMT source sentences using RoBERTa gives only slightly poorer
results compared to using reference labels10. We find that the automatic tags agree with
human tags for 84% of WinoMT sentences, with no difference in performance between
masculine- and feminine-labelled sentences, or pro- and anti-stereotypical sentences. This
is encouraging, and suggests that the tagged inflection approach may also be applicable to
natural text, for which manual labelling is often impractical.

Gender-neutral translation

In Table 8.14 we report on systems adapted to the neutral-augmented synthetic sets, evaluated
on the neutral-only WinoMT set. We use test labelling for all cases where models are trained

10Investigations into options for automatically labelling the WinoMT test sets were carried out by R. Sallis
for a MEng thesis in progress (Sallis, 2021).
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System Labelled WinoMT en-de en-es
Acc ∆L2 Acc ∆L2

Baseline × 2.7 - 4.2 -
V0 × 13.5 28.8 6.4 3.9
V1 X 27.3 28.2 25.4 25.1
V2 X 23.0 39.6 32.1 27.5
V3 X 20.2 18.7 38.8 10.0
V4 X 19.4 4.4 56.5 0.7

Table 8.14 Primary-entity accuracy and second-entity label correspondence ∆L2 on a neutral-
label-only extension of WinoMT. Here, adaptation sets and lattices are augmented with
synthetic neutral articles and nouns. ‘Labelled WinoMT’ indicates whether each sentence is
tagged with its reference (neutral) gender label.

with tags. As with the binary experiments we found that performance was poor when test
sentences were untagged.

Unsurprisingly, the baseline model is unable to generate the newly defined gender-neutral
articles or noun inflections – the non-zero accuracy results from existing WinoMT sentences
with neutral entities like ‘someone’. Adapting on the neutral-augmented V0 set does little
better for en-es, although it gives a larger gain for en-de. This discrepancy may be because
the only neutral gender signal in the V0 source sentences is from the possessive pronoun
their. In Spanish, which has one gender-neutral third-person singular pronoun, ‘their’ has
the same Spanish translation as his or her and therefore does not constitute a strong gender
signal, while in German we add a synthetic singular gender-neutral pronoun, which indicates
neutral gender even without tags.

Adding a gender tag significantly improves primary entity accuracy. As with Table 8.12,
there is little difference in labelled-WinoMT performance when the possessive pronoun
is removed. Also as previously, the V3 and V4 ‘tagged coreference’ sets shows far less
over-generalization in terms of ∆L2 than the other tagged schemes, although V4 significantly
outperforms V3 for en-es on this set.

We note that primary-entity accuracy is relatively low compared to results for the original
WinoMT set, with our best-performing system reaching 56.5% accuracy. We consider this
unsurprising since the model has never encountered most of the neutral-inflected occupation
terms before, even during adaptation, due to the lack of overlap between the adaptation and
WinoMT test sets. However, it does suggest that more work remains for introducing novel
gender inflections for NMT.
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8.5.5 Summary of tagged adaptation for controllable gender signals

Tagging words with target language gender inflection is a powerful way to improve accuracy
of translated inflections. Tagging could be applied in cases where the gender of a referent is
known, or as monolingual coreference resolution tools improve sufficiently to be used for
automatic tagging. The scheme also has potential application to new inflections defined for
gender-neutral language.

However, there is a risk that gender features will be used in an over-general way. Providing
a strong gender signal for one entity can cause harm by erasing other entities in the same
sentence, unless a model is specifically trained to translate sentences with multiple entities.
In particular we find that systems trained on multiple-entity translation examples allow good
performance while minimizing peripheral effects.

8.6 Conclusions

We treat the presence of gender bias in NMT systems as a domain adaptation problem. We
explore various data-centric approaches to adjusting demonstrate strong improvements under
the WinoMT challenge set by adapting to tiny, synthetic datasets with equal numbers of
masculine and feminine entities for three language pairs. We show that this approach can be
further extended to translation of gender-neutral entities.

We also explore regularized adaptation and lattice rescoring techniques to limit degrada-
tion in general translation ability, in the latter case without requiring access to the original
model or data. In general our schemes involve encouraging the model to rely on ‘gender
signals’, whether gendered terms or explicit tags, rather than relying heavily on demographics
represented in training data.

We also investigate some previously unexplored side-effects of such approaches, such as
over-generalization of a gender feature. We emphasize that work on gender coreference in
translation requires care to ensure that the effects of interventions are as intended, as well as
testing scenarios that capture the full complexity of the problem, if the work is to have an
impact on gender bias.

Overall, we find that small-domain adaptation has great potential as more effective and
efficient approach to reducing bias effects in machine translation than counterfactual data
augmentation. We do not claim to fix the bias problem in NMT, but demonstrate that the
effects of gender bias can be reduced without degradation in overall translation quality.





Chapter 9

Conclusions

This thesis aimed to explore domain adaptation for NMT with an eye towards the possibility of
multi-domain scenarios. The potential risks of neglecting unknown-domain or multi-domain
translation scenarios are particularly relevant as industrial NMT providers increasingly
compete over the ability to adapt to small quantities of customer data (Savenkov, 2018).
Often these approaches neglect the attendant risks of catastrophic forgetting, domain over-
fitting and mismatch, and exposure bias effects. While architectural changes or retraining
may avoid these complications for a given domain with sufficient training data, such methods
are potentially expensive and rely heavily on foreknowledge of the test domain. Instead, we
have explored simple adjustments to the parameter adaptation and inference procedure to
improve domain adaptation for NMT.

At the start of this thesis we posed five research questions concerning domain adaptation
for NMT. In this concluding chapter we discuss how this thesis has addressed those questions
and review our contributions.

9.1 How effective are data-centric approaches to NMT do-
main adaptation?

Simple domain-specific data selection, followed by straightforward continued training of the
model on the new data, can be seen as a data-centric approach to domain adaptation. We
explore this approach in Chapter 4 of this thesis, as well as treating it as a baseline approach
in Chapter 5.

In both chapters we do indeed find that selecting domain-relevant training data and
performing unregularized MLE fine-tuning achieves extremely strong results on individual
domains. In particular we achieve state-of-the-art results for biomedical translation shared
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tasks. However, these findings come with two important caveats. Firstly, we find that data-
centric approaches to adaptation can lead to side-effects of exposure bias and catastrophic
forgetting of other domains. Secondly, we find that data-centric approaches were outper-
formed by methods which also changed adaptation or inference procedure. This was partially
due to the same side-effects of domain adaptation. As well, however, results in Chapter 5
suggest that robust tuning techniques like EWC and doc-MRT may simply give better model
convergence.

9.2 Given an adaptation dataset, what training schemes
might improve machine translation quality?

As we found in answering RQ1, data-centric fine-tuning can lead to side-effects of expo-
sure bias and catastrophic forgetting. Our most successful schemes for combatting these
side-effects involved approaches which were not simply data-centric, such as changes to
the adaptation algorithm in Chapter 5 (EWC regularization and document Minimum Risk
Training) or use of adaptive multi-domain ensemble weighting at inference time in Chapter 6.
At inference time, we showed that adaptive ensemble weighting schemes could outperform
the ‘oracle’ model trained or fine-tuned with data from a single domain.

9.3 Can domain adaptation help when the test domain is
unknown?

Most domain adaptation approaches assume that the test domain is known and fixed. Some
also assume that we have training and validation data that matches the test domain, generally
by using provenance as a surrogate for domain. In this thesis we also use provenance ‘domain’
labels for ease of reporting and comparison, but otherwise attempt to relax these assumptions.

In Chapter 5 we show that adapting sequentially across domains with regularization
can achieve good cross-domain performance. In Chapter 6 we show that unknown-domain
adaptive ensembling can out-perform approaches using oracle information – that is, choosing
the model domain based on known test data provenance. We show that adaptive inference
is complementary to multi-domain models, as this is the case even when the oracle models
have been sequentially adapted for strong performance across multiple domains.
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9.4 Can changing data representation have similar effects
to changing data domain?

Unlike data domain, data representation does not change text content or correspond to text
provenance. However, in Chapter 7, we demonstrate that combining NMT models which use
different data representations can benefit translation quality. We therefore combine multiple
data representations either in a single model or in an ensemble in a way reminiscent of multi-
domain translation. In particular, we develop a scheme for ensembles of models producing
multiple target language representations, and show that multi-representation ensembles
improve syntax-based NMT.

9.5 Can gender bias in NMT systems be mitigated by treat-
ing it as a domain?

In Chapter 8 we show gender bias effects are strongly influenced by vocabulary distributions
in the training data, a key hallmark of a domain. We also show that data selection methods,
particularly tuning on a synthetic dataset with carefully-selected gender features, have a
strong effect on apparent model gender bias. We apply techniques developed elsewhere in
the thesis to the problem of tuning on this set, specifically regularized adaptation and multi-
domain inference. We show that gender bias effects in machine translation can be treated as
a domain, and that the effects can be mitigated without impact on general translation quality.

9.6 Final remarks

A human can integrate knowledge from multiple new sources across the course of their
life, and use it to inform their decisions, actions and indeed language. NMT systems do
not currently behave in this way as a matter of course. However, this thesis has explored a
number of possible avenues towards such behaviour.

With our work on the translation of gendered language in particular, we highlighted that
human language is both complex and evolving, as are the contexts in which we interact with
NLP tools. With this thesis we hope to draw attention to the possible benefits and drawbacks
of different approaches to domain adaptive machine translation, as well as their possible
applications. We hope that future work on adaptive NMT will focus not only on the language
of immediate interest but the machine translation abilities or tendencies that we wish to
maintain or abandon.
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